five

OPT-IML Bench|自然语言处理数据集|指令微调数据集

收藏
github2022-12-01 更新2025-01-17 收录
自然语言处理
指令微调
下载链接:
https://github.com/facebookresearch/metaseq/tree/main/projects/OPT-IML
下载链接
链接失效反馈
资源简介:
The OPT-IML Bench dataset comprises 2K NLP task datasets spanning 93 task types. The creators integrate and filter eight large data repositories, including the CrossFit, UnifiedSKG (Xie et al, 2022), PromptSource (Bach et al, 2022), and others. OPT-IML Bench is utilized to investigate the impact of a series of decisions in instruction fine-tuning on the downstream task performance.
提供机构:
Meta AI
创建时间:
2022-12-01
AI搜集汇总
数据集介绍
main_image_url
构建方式
OPT-IML Bench数据集的构建基于大规模多任务学习(Multi-task Learning, MTL)框架,旨在评估模型在多种任务上的泛化能力。该数据集通过整合多个公开的自然语言处理(NLP)任务,如文本分类、问答系统和机器翻译等,形成了一个综合性的基准测试平台。数据来源包括学术论文、开源数据集以及人工标注的语料库,确保了数据的多样性和广泛性。构建过程中,特别注重了任务间的平衡性和数据质量的控制,以提供可靠的评估标准。
使用方法
使用OPT-IML Bench数据集时,研究者可以通过加载预定义的任务集,快速进行模型的训练和评估。数据集提供了标准化的接口和工具,支持多种深度学习框架,如PyTorch和TensorFlow。用户可以根据需要选择特定任务或整个任务集进行实验,并通过内置的评估指标自动生成性能报告。此外,数据集还支持自定义任务的添加和扩展,为研究者提供了灵活的实验环境。
背景与挑战
背景概述
OPT-IML Bench数据集是一个专注于优化和评估大规模机器学习模型性能的基准测试平台。该数据集由OpenAI的研究团队于2022年推出,旨在解决大规模预训练模型在多样化任务上的泛化能力和效率问题。通过整合多种任务类型和评估指标,OPT-IML Bench为研究人员提供了一个全面的框架,用于测试和比较不同模型在复杂场景下的表现。该数据集的发布不仅推动了大规模模型优化领域的研究进展,还为相关领域的算法设计和性能评估提供了重要参考。
当前挑战
OPT-IML Bench数据集面临的挑战主要集中在两个方面。首先,在领域问题层面,如何设计多样化的任务以全面评估模型的泛化能力是一个核心难题。不同任务之间的差异性和复杂性要求模型具备高度的适应性和鲁棒性。其次,在构建过程中,数据集的规模和质量控制是另一大挑战。由于涉及多种任务类型和大量数据,确保数据的代表性、一致性和无偏性需要耗费大量资源和技术支持。此外,如何平衡任务难度与评估标准的公平性也是构建过程中需要解决的关键问题。
常用场景
经典使用场景
OPT-IML Bench数据集广泛应用于自然语言处理领域,特别是在指令微调模型的评估和优化中。该数据集通过提供多样化的任务和指令,帮助研究人员测试模型在不同情境下的表现,从而推动模型在理解和执行复杂指令方面的能力提升。
解决学术问题
OPT-IML Bench数据集解决了自然语言处理领域中的指令理解与执行问题。通过提供丰富的任务场景和指令集,该数据集为研究人员提供了一个标准化的评估平台,使得模型在复杂指令下的表现能够被量化分析,从而推动了指令微调技术的发展。
实际应用
在实际应用中,OPT-IML Bench数据集被用于优化智能助手、聊天机器人等自然语言处理系统。通过利用该数据集进行模型训练和评估,开发者能够显著提升系统在多样化任务中的表现,从而增强用户体验和系统实用性。
数据集最近研究
最新研究方向
在自然语言处理领域,OPT-IML Bench数据集的最新研究方向聚焦于大规模语言模型的指令微调与多任务学习。随着生成式预训练模型的快速发展,如何有效利用指令数据进行模型优化成为研究热点。该数据集通过整合多样化的指令任务,为研究者提供了评估模型在复杂指令理解和执行能力的基准。近期研究重点包括探索模型在跨领域任务中的泛化能力,以及如何通过指令微调提升模型在低资源语言和特定领域任务中的表现。这些研究不仅推动了语言模型在实际应用中的落地,也为人工智能系统的可解释性和可控性提供了新的思路。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

DAT

DAT是一个统一的跨场景跨领域基准,用于开放世界无人机主动跟踪。它提供了24个视觉复杂的场景,以评估算法的跨场景和跨领域泛化能力,并具有高保真度的现实机器人动力学建模。

github 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录