ADE20K|计算机视觉数据集|图像分割数据集
收藏
- ADE20K数据集首次发表,由MIT计算机科学与人工智能实验室(CSAIL)的研究团队创建,旨在解决场景解析和语义分割问题。
- ADE20K数据集在CVPR(计算机视觉与模式识别会议)上正式发布,并迅速成为场景解析和语义分割领域的重要基准。
- ADE20K数据集被广泛应用于多个深度学习模型中,包括U-Net和DeepLab等,显著提升了这些模型在场景解析任务中的表现。
- ADE20K数据集的扩展版本发布,增加了更多的图像和类别,进一步丰富了数据集的内容和多样性。
- ADE20K数据集在多个国际竞赛中被用作基准数据集,推动了场景解析和语义分割技术的快速发展。
- ADE20K数据集的研究成果被广泛应用于自动驾驶、医学图像分析和智能监控等领域,展示了其在实际应用中的巨大潜力。
- 1Scene Parsing through ADE20K DatasetMIT CSAIL · 2017年
- 2DenseASPP for Semantic Segmentation in Street ScenesETH Zurich · 2018年
- 3Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic SegmentationGoogle Research · 2020年
- 4Rethinking Atrous Convolution for Semantic Image SegmentationGoogle Research · 2017年
- 5Encoder-Decoder with Atrous Separable Convolution for Semantic Image SegmentationGoogle Research · 2018年
中国1km分辨率逐月降水量数据集(1901-2024)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
OpenSonarDatasets
OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。
github 收录
Wind Turbine Data
该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。
www.kaggle.com 收录
中国高分辨率高质量PM2.5数据集(2000-2023)
ChinaHighPM2.5数据集是中国高分辨率高质量近地表空气污染物数据集(ChinaHighAirPollutants, CHAP)中PM2.5数据集。该数据集利用人工智能技术,使用模式资料填补了卫星MODIS MAIAC AOD产品的空间缺失值,结合地基观测、大气再分析和排放清单等大数据生产得到2000年至今全国无缝隙地面PM2.5数据。数据十折交叉验证决定系数R2为0.92,均方根误差RMSE为10.76 µg/m3。主要范围为整个中国地区,空间分辨率为1 km,时间分辨率为日、月、年,单位为µg/m3。注意:该数据集持续更新,如需要更多数据,请发邮件联系作者(weijing_rs@163.com; weijing@umd.edu)。 数据文件中包含NC转GeoTiff的四种代码(Python、Matlab、IDL和R语言)nc2geotiff codes。
国家青藏高原科学数据中心 收录
highD
highD数据集是由亚琛工业大学汽车工程研究所创建的,旨在为高度自动化驾驶系统的安全验证提供大规模自然车辆轨迹数据。该数据集包含从德国高速公路收集的16.5小时测量数据,涵盖110,000辆车,总行驶距离达45,000公里,记录了5600次完整的变道行为。数据集通过配备高分辨率摄像头的无人机从空中视角进行测量,确保了数据的准确性和自然性。highD数据集不仅用于安全验证和影响评估,还支持交通模拟模型、交通分析、驾驶员模型和道路用户预测模型等领域的研究,旨在解决高度自动化驾驶系统在复杂交通环境中的应用问题。
arXiv 收录