five

Global simulations of fluvial floods based on the ISIMIP2 ensemble of global hydrological models|洪水模拟数据集|气候变化数据集

收藏
DataCite Commons2024-07-05 更新2024-07-13 收录
洪水模拟
气候变化
下载链接:
https://data.isimip.org/10.48364/ISIMIP.303619
下载链接
链接失效反馈
资源简介:
The research project Short- and Long-Term Impacts of Climate Extremes (SLICE, 2019) entailed the provision of historical data and future projections of key hazard risk indicators for all project-relevant climate hazards in close collaboration with ISIMIP (www.isimip.org). In particular, the flood hazard indicators are of special interest for scientists and stakeholders and were applied in several risk assessments. The final report "UNDERSTANDING THE SHORT AND LONG-TERM IMPACTS OF CLIMATE EXTREMES" (Zimmer et al. 2023) summarizes project results and provides a detailed description of the flood data in its Technical Appendix.<br>The dataset entails historical simulations of annual river flood maxima (river discharge, flooded areas, flood depth), covering the time period 1971-2010, based on the input of climate reanalysis datasets (ISIMIP2a, Schewe et al. 2019) and future projections of annual river flood maxima (flooded areas, flood depth), covering the time period 2006-2100 complemented by simulations driven by historical GCM runs covering the time period 1860-2006 and pre-industrial control runs (ISIMIP2b, Frieler et al. 2017).<br>To derive spatially explicit flood hazard indicators, climate forcing data was processed by the ensemble of GHMs participating in ISIMIP2 harmonized with regard to their underlying river routing scheme by means of the global hydrodynamic model CaMa-Flood (v3.6.2 https://hydro.iis.u-tokyo.ac.jp/~yamadai/cama-flood/, Yamazaki et al., 2011). Data is provided assuming different levels of river flood protection including protection levels from the global database of FLOod PROtection Standards (FLOPROS, Scussolini et al. 2016).
提供机构:
ISIMIP Repository
创建时间:
2024-07-04
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

yahoo-finance-data

该数据集包含从Yahoo! Finance、Nasdaq和U.S. Department of the Treasury获取的财务数据,旨在用于研究和教育目的。数据集包括公司详细信息、高管信息、财务指标、历史盈利、股票价格、股息事件、股票拆分、汇率和每日国债收益率等。每个数据集都有其来源、简要描述以及列出的列及其数据类型和描述。数据定期更新,并以Parquet格式提供,可通过DuckDB进行查询。

huggingface 收录

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录

Tropicos

Tropicos是一个全球植物名称数据库,包含超过130万种植物的名称、分类信息、分布数据、图像和参考文献。该数据库由密苏里植物园维护,旨在为植物学家、生态学家和相关领域的研究人员提供全面的植物信息。

www.tropicos.org 收录

全国 1∶200 000 数字地质图(公开版)空间数据库

As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.

DataCite Commons 收录

阿里电商数据集

包含阿里电商平台的交易数据,用于分析电商行业趋势和消费者行为。

github 收录