five

Transportation and Quality of Life|交通影响数据集|生活质量数据集

收藏
DataCite Commons2020-08-01 更新2024-07-03 收录
交通影响
生活质量
下载链接:
https://journals.aau.dk/index.php/td/article/view/5018
下载链接
链接失效反馈
资源简介:
This paper studies the importance of transportation for the quality of life in Denmark. The average Dane spends about 55 minutes on transport per day (DTU [2013]) and the average household's expenditure devoted to transport is about 20 % of the total household budget (Berri et al. [2014]).1 It is therefore important to recognize the importance of transportation for the quality of life. Transportation is derived demand as individuals often consume the service not because they benet from consumption directly, but because they partake in other consumption or activities elsewhere (see e.g. Small and Verhoef [2007]). Transportation allows households to buy consumption goods and activities, get to work and enjoy leisure. Households therefore face in general trade-o between, on one hand productivity and consumption advantages (high-paying jobs and high quality local urban amenities), and on the other hand higher costs of living and dis-amenities (high housing costs, congestions and pollution), when they decide where to live. Transportation infrastructure facilitates interaction within cities. It relieves pressure on urban land by enabling workers to live at some distance from their jobs at reasonable commutes. Transport infrastructure thus aect the attractiveness of urban areas. We construct a transport adjusted Quality of Life Index (QLI) for the 98 urban areas - municipalities - covering Denmark. Using this index we investigate the importance of adjusting for the inter area commute patterns in terms of the quality of life of a typical household. We also investigate the relationship between transport infrastructure investments and the QLI.
提供机构:
Proceedings from the Annual Transport Conference at Aalborg University
创建时间:
2020-04-29
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

Wafer Defect

该数据集包含了七个主要类别的晶圆缺陷,分别是:BLOCK ETCH、COATING BAD、PARTICLE、PIQ PARTICLE、PO CONTAMINATION、SCRATCH和SEZ BURNT。这些类别涵盖了晶圆在生产过程中可能出现的多种缺陷类型,每一种缺陷都有其独特的成因和表现形式。数据集不仅在类别数量上具有多样性,而且在样本的多样性和复杂性上也展现了其广泛的应用潜力。每个类别的样本均经过精心标注,确保了数据的准确性和可靠性。

github 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录