five

Comparison and Distinctiveness|儿童认知发展数据集|实验心理学数据集

收藏
Mendeley Data2024-03-27 更新2024-06-26 收录
儿童认知发展
实验心理学
下载链接:
https://data.mendeley.com/datasets/jbtfxn997r
下载链接
链接失效反馈
资源简介:
In two experiments, we investigated the role of dimensional distinctiveness on the generalization of novel names for unfamiliar objects. In a comparison versus no-comparison design, we also manipulated within- and between-category comparisons with 4 and 6-year-olds. In the high-distinctiveness case, both age groups benefited from within comparisons in contrast to no comparison conditions. In the low-distinctiveness case, however, only older children benefited from comparison. Experiment 2 decomposed sources of distinctiveness along the two dimensions in order to determine which dimension must be distinctive in comparison format for better generalization. We interpret these findings in terms of within and between category similarities and differential costs of comparison for varying levels of distinctiveness. In Experiment 1, we used a forced-choice categorization task in which children had to decide which of two simultaneously presented objects would have the same name as the standard(s). Each child performed two practice trials followed by five experimental trials presented in random order. The design was a 4x2x2 with Comparison (within-and between-category comparison, 2-1, vs. within category-comparison, 2-0; vs. between-category comparison 1-1, vs. no comparison, 1-0), Age (4- or 5-year-old), and Distinctiveness (low distinctiveness vs. high distinctiveness) as between-subjects factors. The eight experimental conditions defining the materials were named according to the following logic combining condition of distinctiveness (High or Low), and condition of comparison (1-0; 1-1; 2-0; 2-1). For example, High-1-0 means high distinctive stimuli, one standard (no within-category comparison) and no contrast (no between-category comparison), or Low-2-1 means low distinctive stimuli, two standards (within-category comparison), and one contrast (see Table 1). We also used a forced-choice categorization task in Experiment 2. Each child performed two practice trials followed by five experimental trials presented in random order. The design was a 4x2 with Distinctiveness (High-Shape/High-Texture, HS/HT, High-Shape/Low-Texture, HS/LT, Low-Shape/High-Texture, LS/HT, Low-Shape/Low-Texture, LS/LT) and Age (4- or 5-year-old) as between-subjects factor. The four experimental conditions defining the materials were named according to each dimension’s distinctiveness: - In the High-Shape/High-Texture condition both shape and texture were distinctive - In the High-Shape/Low-Texture condition, the shape was distinctive but not the texture - In the Low-Shape/High-Texture condition, the texture was distinctive but not the shape - In the Low-Shape/Low-Texture condition, both shape and texture were not distinctive In the Data files, 1 corresponds to a response based on texture, and 0 corresponds to a response based on shape.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录

中国1km分辨率逐月NDVI数据集(2001-2023年)

中国1km分辨率逐月NDVI数据集(2001-2023年)根据MODIS MOD13A2数据进行月度最大值合成、镶嵌和裁剪后制作而成,包含多个TIF文件,每个TIF文件对应该月最大值NDVI数据,文件以时间命名。数据值域改为-0.2~1,不再需要除以一万,另外范围扩大到中国及周边地区,可以自行裁剪。数据分为两个文件夹,MVC文件夹中为MOD13A2 NDVI逐月最大值合成结果,mod1k_SGfilter为MVC中数据S-G滤波后的结果。

国家地球系统科学数据中心 收录