five

OntoNotes Release 4.0

收藏
DataCite Commons2021-07-01 更新2025-04-16 收录
下载链接:
https://catalog.ldc.upenn.edu/LDC2011T03
下载链接
链接失效反馈
资源简介:
<h3>Introduction</h3><br> <p>OntoNotes Release 4.0, Linguistic Data Consortium (LDC) catalog number LDC2011T03 and isbn 1-58563-574-X, was developed as part of the OntoNotes project, a collaborative effort between BBN Technologies, the University of Colorado, the University of Pennsylvania and the University of Southern Californias Information Sciences Institute. The goal of the project is to annotate a large corpus comprising various genres of text (news, conversational telephone speech, weblogs, usenet newsgroups, broadcast, talk shows) in three languages (English, Chinese, and Arabic) with structural information (syntax and predicate argument structure) and shallow semantics (word sense linked to an ontology and coreference). OntoNotes Release 4.0 is supported by the Defense Advance Research Project Agency, GALE Program Contract No. HR0011-06-C-0022.</p><br> <p>OntoNotes Release 4.0 contains the content of earlier releases -- <a href="http://catalog.ldc.upenn.edu/LDC2007T21" rel="nofollow">OntoNotes Release 1.0 LDC2007T21</a>,<a href="http://catalog.ldc.upenn.edu/LDC2008T04" rel="nofollow"> OntoNotes Release 2.0 LDC2008T04</a> and <a href="http://catalog.ldc.upenn.edu/LDC2009T24" rel="nofollow">OntoNotes Release 3.0 LDC2009T24</a> -- and adds newswire, broadcast news, broadcast conversation and web data in English and Chinese and newswire data in Arabic. This cumulative publication consists of 2.4 million words as follows: 300k words of Arabic newswire 250k words of Chinese newswire, 250k words of Chinese broadcast news, 150k words of Chinese broadcast conversation and 150k words of Chinese web text and 600k words of English newswire, 200k word of English broadcast news, 200k words of English broadcast conversation and 300k words of English web text.</p><br> <p>The OntoNotes project builds on two time-tested resources, following the <a href="http://catalog.ldc.upenn.edu/LDC99T42" rel="nofollow"> Penn Treebank</a> for syntax and the <a href="http://catalog.ldc.upenn.edu/LDC2004T14" rel="nofollow">Penn PropBank</a> for predicate-argument structure. Its semantic representation will include word sense disambiguation for nouns and verbs, with each word sense connected to an ontology, and coreference. The current goals call for annotation of over a million words each of English and Chinese, and half a million words of Arabic over five years.&nbsp;</p><br> <h3>Data</h3><br> <p>Documents describing the annotation guidelines and the routines for deriving various views of the data from the database are included in the documentation directory of this release. The annotation is provided both in separate text files for each annotation layer (Treebank, PropBank, word sense, etc.) and in the form of an integrated relational database (ontonotes-v4.0.sql.gz) with a Python API to provide convenient cross-layer access.</p><br> <h3>Tools</h3><br> <p>This release includes OntoNotes DB Tool v0.999 beta, the tool used to assemble the database from the original annotation files.&nbsp;It can be found in the directory ontonotes-db-tool-v0.999b. This tool can be used to derive various views of the data from the database, and it provides an API that can implement new queries or views. Licensing information for the OntoNotes DB Tool package is included in its source directory.</p><br> <h3>Updates</h3><br> <p>On May 21st, 2013 an update was issued to fix some bracketing errors in the follolwing file (ontonotes-release-4.0/data/files/data/english/annotations/nw/wsj/05/wsj_0560.parse), all corpora ordered after this date will include the update. Please contact <a href="ldc@ldc.upenn.edu" rel="nofollow">ldc@ldc.upenn.edu</a> for more information or to obtain the updated file.</p><br> <h3>Sponsorship</h3><br> <p>This work is supported in part by the Defense Advanced Research Projects Agency, GALE Program Grant No. HR0011-06-1-003. The content of this publication does not necessarily reflect the position or policy of the Government, and no official endorsement should be inferred.</p><br> <h3>Samples</h3><br> <ul><br> <li><a href="desc/addenda/LDC2009T24_arb.jpg" rel="nofollow">Arabic</a></li><br> <li><a href="desc/addenda/LDC2009T24_chn.jpg" rel="nofollow">Chinese</a></li><br> <li><a href="desc/addenda/LDC2009T24_eng.jpg" rel="nofollow">English</a></li><br> </ul><br> <p>&nbsp;</p></br> Portions © 2006 Abu Dhabi TV, © 2006 Agence France Presse, © 2006 Al-Ahram, © 2006 Al Alam News Channel, © 2006 Al Arabiya, © 2006 Al Hayat, © 2006 Al Iraqiyah, © 2006 Al Quds-Al Arabi, © 2006 Anhui TV, © 2002, 2006 An Nahar, © 2006 Asharq-al-Awsat, © 2005 Cable News Network, LP, LLLP, © 2000-2001 China Broadcasting System, © 2000-2001, 2005-2006 China Central TV, © 2006 China Military Online, © 2000-2001 China National Radio, © 2006 Chinanews.com, © 2000-2001 China Television System, © 1989 Dow Jones &amp; Company, Inc., © 2006 Dubai TV, © 2006 Guangming Daily, © 2006 Kuwait TV, © 2005-2006 National Broadcasting Company, Inc., © 2006 New Tang Dynasty TV, © 2006 Nile TV, © 2006 Oman TV, © 2006 PAC Ltd, © 2006 Peoples Daily Online, © 2005-2006 Phoenix TV, © 2000-2001 Sinorama Magazine, © 2006 Syria TV, © 1996-1998, 2006 Xinhua News Agency, © 2007, 2008, 2009, 2011 Trustees of the University of Pennsylvania
提供机构:
Linguistic Data Consortium
创建时间:
2020-11-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录