HC-85/flood-prediction|洪水预测数据集|环境科学数据集
收藏数据集概述
数据集名称
- openfe
特征信息
数据集包含以下特征:
- MonsoonIntensity: int64
- TopographyDrainage: int64
- RiverManagement: int64
- Deforestation: int64
- Urbanization: int64
- ClimateChange: int64
- DamsQuality: int64
- Siltation: int64
- AgriculturalPractices: int64
- Encroachments: int64
- IneffectiveDisasterPreparedness: int64
- DrainageSystems: int64
- CoastalVulnerability: int64
- Landslides: int64
- Watersheds: int64
- DeterioratingInfrastructure: int64
- PopulationScore: int64
- WetlandLoss: int64
- InadequatePlanning: int64
- PoliticalFactors: int64
- autoFE_f_0: float64
- autoFE_f_1: float64
- autoFE_f_2: float64
- autoFE_f_3: float64
- autoFE_f_4: float64
- autoFE_f_5: float64
- autoFE_f_6: float64
- autoFE_f_7: float64
- autoFE_f_8: float64
- autoFE_f_9: float64
- autoFE_f_10: float64
- autoFE_f_11: float64
- autoFE_f_12: float64
- autoFE_f_13: float64
- autoFE_f_14: float64
- autoFE_f_15: float64
- autoFE_f_16: float64
- autoFE_f_17: float64
- autoFE_f_18: float64
- autoFE_f_19: float64
- autoFE_f_20: float64
- autoFE_f_21: float64
- autoFE_f_22: float64
- autoFE_f_23: float64
- autoFE_f_24: float64
- autoFE_f_25: float64
- autoFE_f_26: float64
- autoFE_f_27: float64
- autoFE_f_28: float64
- autoFE_f_29: float64
- autoFE_f_30: float64
- autoFE_f_31: float64
- autoFE_f_32: float64
- autoFE_f_33: float64
- autoFE_f_34: float64
- autoFE_f_35: float64
- autoFE_f_36: float64
- autoFE_f_37: float64
- autoFE_f_38: float64
- autoFE_f_39: float64
- autoFE_f_40: float64
- autoFE_f_41: float64
- autoFE_f_42: float64
- autoFE_f_43: float64
- autoFE_f_44: float64
- autoFE_f_45: float64
- autoFE_f_46: float64
- autoFE_f_47: float64
- autoFE_f_48: float64
- autoFE_f_49: float64
- autoFE_f_50: float64
- autoFE_f_51: float64
- autoFE_f_52: float64
- autoFE_f_53: float64
- autoFE_f_54: float64
- autoFE_f_55: float64
- autoFE_f_56: float64
- autoFE_f_57: float64
- autoFE_f_58: float64
- autoFE_f_59: float64
- autoFE_f_60: float64
- autoFE_f_61: float64
- autoFE_f_62: float64
- autoFE_f_63: float64
- autoFE_f_64: float64
- autoFE_f_65: float64
- autoFE_f_66: float64
- autoFE_f_67: float64
- autoFE_f_68: float64
- autoFE_f_69: float64
- autoFE_f_70: float64
- autoFE_f_71: float64
- autoFE_f_72: float64
- autoFE_f_73: float64
- autoFE_f_74: float64
- autoFE_f_75: float64
- autoFE_f_76: float64
- autoFE_f_77: float64
- autoFE_f_78: float64
- autoFE_f_79: float64
- autoFE_f_80: float64
- autoFE_f_81: float64
- autoFE_f_82: float64
- autoFE_f_83: float64
- autoFE_f_84: float64
- autoFE_f_85: float64
- autoFE_f_86: float64
- autoFE_f_87: float64
- autoFE_f_88: float64
- autoFE_f_89: float64
- autoFE_f_90: float64
- autoFE_f_91: float64
- autoFE_f_92: float64
- autoFE_f_93: float64
- autoFE_f_94: float64
- autoFE_f_95: float64
- autoFE_f_96: float64
- autoFE_f_97: float64
- autoFE_f_98: float64
- autoFE_f_99: float64
- autoFE_f_100: float64
- autoFE_f_101: float64
- autoFE_f_102: float64
- autoFE_f_103: float64
- autoFE_f_104: float64
- autoFE_f_105: float64
- autoFE_f_106: float64
- autoFE_f_107: float64
- autoFE_f_108: float64
- autoFE_f_109: float64
- autoFE_f_110: float64
- autoFE_f_111: float64
- autoFE_f_112: float64
- autoFE_f_113: float64
- autoFE_f_114: float64
- autoFE_f_115: float64
- autoFE_f_116: float64
- autoFE_f_117: float64
- autoFE_f_118: float64
- autoFE_f_119: float64
- autoFE_f_120: float64
- autoFE_f_121: float64
- autoFE_f_122: float64
- autoFE_f_123: float64
- autoFE_f_124: float64
- autoFE_f_125: float64
- autoFE_f_126: float64
- autoFE_f_127: float64
- autoFE_f_128: float64
- autoFE_f_129: float64
- autoFE_f_130: float64
- autoFE_f_131: float64
- autoFE_f_132: float64
- autoFE_f_133: float64
- autoFE_f_134: float64
- autoFE_f_135: float64
- autoFE_f_136: float64
- autoFE_f_137: float64
- autoFE_f_138: float64
- autoFE_f_139: float64
- autoFE_f_140: float64
- autoFE_f_141: float64
- autoFE_f_142: float64
- autoFE_f_143: float64
- autoFE_f_144: float64
- autoFE_f_145: float64
- autoFE_f_146: float64
- autoFE_f_147: float64
- autoFE_f_148: float64
- autoFE_f_149: float64
- autoFE_f_150: float64
- autoFE_f_151: float64
- autoFE_f_152: float64
- autoFE_f_153: float64
- autoFE_f_154: float64
- autoFE_f_155: float64
- autoFE_f_156: float64
- autoFE_f_157: float64
- autoFE_f_158: float64
- autoFE_f_159: float64
- autoFE_f_160: float64
- autoFE_f_161: float64
- autoFE_f_162: float64
- autoFE_f_163: float64
- autoFE_f_164: float64
- autoFE_f_165: float64
- autoFE_f_166: float64
- autoFE_f_167: float64
- autoFE_f_168: float64
- autoFE_f_169: float64
- autoFE_f_170: float64
- autoFE_f_171: float64
- autoFE_f_172: float64
- autoFE_f_173: float64
- autoFE_f_174: float64
- autoFE_f_175: float64
- autoFE_f_176: float64
- autoFE_f_177: float64
- autoFE_f_178: float64
- autoFE_f_179: float64
- autoFE_f_180: float64
- autoFE_f_181: float64
- autoFE_f_182: float64
- autoFE_f_183: float64
- autoFE_f_184: float64
- autoFE_f_185: float64
- autoFE_f_186: float64
- autoFE_f_187: float64
- autoFE_f_188: float64
- autoFE_f_189: float64
- autoFE_f_190: float64
- autoFE_f_191: float64
- autoFE_f_192: float64
- autoFE_f_193: float64
- autoFE_f_194: float64
- autoFE_f_195: float64
- autoFE_f_196: float64
- autoFE_f_197: float64
- autoFE_f_198: float64
- autoFE_f_199: float64
- autoFE_f_200: float64
- autoFE_f_201: float64
- autoFE_f_202: float64
- autoFE_f_203: float64
- autoFE_f_204: float64
- autoFE_f_205: float64
- autoFE_f_206: float64
- autoFE_f_207: float64
- autoFE_f_208: float64
- autoFE_f_209: float64
- autoFE_f_210: float64
- autoFE_f_211: float64
- autoFE_f_212: float64
- autoFE_f_213: float64
- autoFE_f_214: float64
- autoFE_f_215: float64
- autoFE_f_216: float64
- autoFE_f_217: float64
- autoFE_f_218: float64
- autoFE_f_219: float64
- autoFE_f_220: float64
- autoFE_f_221: float64
- autoFE_f_222: float64
- autoFE_f_223: float64
- autoFE_f_224: float64
- autoFE_f_225: float64
- autoFE_f_226: float64
- autoFE_f_227: float64
- autoFE_f_228: float64
- autoFE_f_229: float64
- autoFE_f_230: float64
- autoFE_f_231: float64
- autoFE_f_232: float64
- autoFE_f_233: float64
- autoFE_f_234: float64
- autoFE_f_235: float64
- autoFE_f_236: float64
- autoFE_f_237: float64
- autoFE_f_238: float64
- autoFE_f_239: float64
- autoFE_f_240: float64
- autoFE_f_241: float64
- autoFE_f_242: float64
- autoFE_f_243: float64
- autoFE_f_244: float64
- autoFE_f_245: float64
- autoFE_f_246: float64
- autoFE_f_247: float64
- autoFE_f_248: float64
- autoFE_f_249: float64
- autoFE_f_250: float64
- autoFE_f_251: float64
- autoFE_f_252: float64
- autoFE_f_253: float64
- autoFE_f_254: float64
- autoFE_f_255: float64
- autoFE_f_256: float64
- autoFE_f_257: float64
- autoFE_f_258: float64
- autoFE_f_259: float64
- autoFE_f_260: float64
- autoFE_f_261: float64
- autoFE_f_262: float64
- autoFE_f_263: float64
- autoFE_f_264: float64
- autoFE_f_265: float64
- autoFE_f_266: float64
- autoFE_f_267: float64
- autoFE_f_268: float64
- autoFE_f_269: float64
- autoFE_f_270: float64
- autoFE_f_271: float64
- autoFE_f_272: float64
- autoFE_f_273: float64
- autoFE_f_274: float64
- autoFE_f_275: float64
- autoFE_f_276: float64
- autoFE_f_277: float64
- autoFE_f_278: float64
- autoFE_f_279: float64
- autoFE_f_280: float64
- autoFE_f_281: float64
- autoFE_f_282: float64
- autoFE_f_283: float64
- autoFE_f_284
GME Data
关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。
github 收录
LIDC-IDRI
LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。
OpenDataLab 收录
中国农村教育发展报告
该数据集包含了中国农村教育发展的相关数据,涵盖了教育资源分布、教育质量、学生表现等多个方面的信息。
www.moe.gov.cn 收录
中国1km分辨率逐月降水量数据集(1901-2023)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
LSUI (Large Scale Underwater Image Dataset)
We released a large-scale underwater image (LSUI) dataset including 5004 image pairs, which involve richer underwater scenes (lighting conditions, water types and target categories) and better visual quality reference images than the existing ones.
Papers with Code 收录