five

遵义市旅游接待情况|旅游业数据集|数据分析数据集

收藏
贵州省政府数据开放平台2022-10-11 更新2024-04-26 收录
旅游业
数据分析
下载链接:
https://data.guizhou.gov.cn/open-data/dbbe5520-9636-42d9-a4ed-b5538cfcd6e4?type=data
下载链接
链接失效反馈
资源简介:
旅游接待,包含外省入黔游客实现收入(亿元)、总体旅游接待情况接待总人数(万人次)、 乡村旅游接待人次(万人次)、外省入黔游客接待人次(万人次)
提供机构:
遵义市文化旅游局
创建时间:
2022-10-11
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。

国家青藏高原科学数据中心 收录

全球1km分辨率大气二氧化碳浓度数据集(2003-2023)

持续增加的人为CO₂排放导致了全球变暖和气候变化,进而引发了全球范围的重大环境、经济和健康损失,基于卫星遥感数据准确连续地监测大气CO₂变化对于理解全球碳循环、评估碳源和碳汇的分布以及制定有效的减排政策至关重要。大气CO2柱浓度(XCO2)指从地表到大气顶层干燥空气柱中CO2的平均体积比,是用来表征大气中CO2分子含量的物理量。当前已公开发表的全球无缝XCO2产品存在无法同时提供长时间跨度和高时空分辨率的问题,限制了其更为广泛的科学应用。本数据集基于来自SCIAMACHY、GOSAT 和 OCO-2 三颗卫星/传感器的XCO2观测数据进行二次研发,以卫星XCO2观测数据为训练标签,与 CO₂ 排放、吸收和传输相关的多源因素为解释变量,利用整合了U-Net网络和ConvLSTM网络的深度学习算法构建预测模型,生成了国际首套2003-2023年全球时空连续1公里分辨率逐日XCO2数据集。经全球27个TCCON地面观测站点的验证,结果表明该产品具有较好的精度(决定系数R2为0.989,均方根误差RMSE为1.021ppm)。本数据集为深化对全球碳循环的理解、评估减排政策以及应对气候变化挑战提供了重要的基础数据。

国家青藏高原科学数据中心 收录

中国逐日格点降水数据集V2(1960–2024,0.1°)

CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。

国家青藏高原科学数据中心 收录

ERIC (Education Resources Information Center)

ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。

eric.ed.gov 收录

IVLLab/MultiDialog

该数据集包含手动注释的元数据,将音频文件与转录、情感和其他属性链接起来。数据集支持多种任务,包括多模态对话生成、自动语音识别和文本到语音转换。数据集的语言为英语,并提供了一个黄金情感对话子集,用于研究对话中的情感动态。数据集的结构包括音频文件、对话ID、话语ID、来源、音频特征、转录文本、情感标签和原始路径等信息。

hugging_face 收录