five

NTU Dataset|行人意图预测数据集|车辆交互数据集

收藏
DataCite Commons2025-05-01 更新2024-08-17 收录
行人意图预测
车辆交互
下载链接:
https://figshare.com/articles/NTU_Dataset/7890764/2
下载链接
链接失效反馈
资源简介:
**************** NTU Dataset ReadMe file *******************<br>Please consider the latest version.<br>Attached files contain our data collected inside Nanyang Technological University Campus for pedestrian intention prediction. The dataset is particularly designed to capture spontaneous vehicle influences on pedestrian crossing/not-crossing intention. <br>We utilize this dataset in our paper "Context Model for Pedestrian Intention Prediction using Factored Latent-Dynamic Conditional Random Fields" submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence.<br>The dataset consists of 35 crossing and 35 stopping* (not-crossing) scenarios. The image sequences are in 'Image_sequences' folder. <br>'stopping_instants.csv' and 'crossing_instants.csv' files provide the stopping and crossing instants respectively, utilized for labeling the data and providing ground-truth for evaluation. Camera1 and Camera2 images are synchronized. Two cameras were used to capture the whole scene of interest.<br>We provide pedestrian and vehicle bounding boxes obtained from [1]. The occlusions and mis-detections are linearly interpolated. All necessary detections are stored in 'Object_detector_pedestrians_vehicles' folder. Each column within the csv files ('car_bndbox_..') corresponds to a unique tracked car within each image sequence. Each of the pedestrian csv files ('ped_bndbox_..') contains only one column, as we consider each pedestrian in the scene separately. <br>Additional details:* [xmin xmax ymin ymax] = [left right top down] (for the bounding boxes)* Dataset frequency: 15 fps.* Camera parameters (in pixels): f = 1135, principal point = (960, 540).<br><br>Additionally, we provide semantic segmentation output [2] and our depth parameters. As the data were collected in two phases, there are two files in each folder, highlighting the sequences in each phase.<br>Crossing sequences 1-28 and stopping sequences 1-24 were collected in Phase 1, while crossing sequences 29-35 and stopping sequences 25-35 were collected in Phase 2.<br>We obtained the optical flow from [3]. Our model (FLDCRF and LSTM) codes are available in 'Models' folder.<br><br>If you use our dataset in your research, please cite our paper:<br>"S. Neogi, M. Hoy, W. Chaoqun, J. Dauwels, 'Context Based Pedestrian Intention Prediction Using Factored Latent Dynamic Conditional Random Fields', IEEE SSCI-2017."<br><br>Please email us if you have any questions:<br>1. Satyajit Neogi, PhD Student, Nanyang Technological University @ satyajit001@e.ntu.edu.sg 2. Justin Dauwels, Associate Professor, Nanyang Technological University @ jdauwels@ntu.edu.sg<br><br>Our other group members include:<br>3. Dr. Michael Hoy, @ mch.hoy@gmail.com4. Dr. Kang Dang, @ kangdang@gmail.com5. Ms. Lakshmi Prasanna Kachireddy, 6. Mr. Mok Bo Chuan Lance,7. Dr. Hang Yu, @ fhlyhv@gmail.com<br><br>References:<br>1. S. Ren, K. He, R. Girshick, J. Sun, ``Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015.2. A. Kendall, V. Badrinarayanan, R. Cipolla, ``Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding", BMVC 2017.3. C. Liu. ``Beyond Pixels: Exploring New Representations and Applications for Motion Analysis". Doctoral Thesis. Massachusetts Institute of Technology. May 2009.<br><br><br>* Please note, we had to remove sequence Stopping-33 for privacy reasons.<br>
提供机构:
figshare
创建时间:
2019-03-26
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

WeChat Social Network Dataset

该数据集包含了微信社交网络的用户关系数据,包括用户之间的关注关系、互动行为等。数据集旨在帮助研究社交网络的结构和动态变化。

www.aminer.cn 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录