five

Remittance Cost - AML and FTRI|汇款成本数据集|金融监管数据集

收藏
DataCite Commons2025-04-14 更新2025-04-16 收录
汇款成本
金融监管
下载链接:
https://www.openicpsr.org/openicpsr/project/226684/view
下载链接
链接失效反馈
资源简介:
The Remittance Prices Worldwide data is divided into two groups – Remittance Cost at the Sending Countries and Remittance Cost at the Receiving Countries. For each group there are two dependent variables. FTRI data is available for 147 countries over a 14-year period. Remittance Paid and Received is available for 200 countries spanning 63 years. AML data is available for a minimum of 110 countries in certain years, up to 162 countries, and for a maximum period of 11 years. Names of the countries in different databases or within a database over different years may be captured differently due to geo-political reasons. Clean-up of such names is done to identify the observation uniquely. For example, Republic of Korea is treated as South Korea, Russian Federation or Soviet Union is treated as Russia, Ivory Coast is treated as Côte d'Ivoire, Czcheia is treated as Zchec Republic, Siam is treated as Thailand, the United States of America is treated as the United States and Türkiye is treated as Turkey. Remittance prices data is treated as the base. The data file is split into two datasets by using the ‘Sending Country’ and ‘Receiving Country’ columns along with their respective remittance cost percentage value columns. For each data file, the observations where the “Transparent" value is 'No” are omitted. The data is organized in panel format in ascending years and sorted alphabetically by country as a second-level sorting. The observations are numbered, and a unique key is created by concatenating the year and the serial number. A secondary key is created by concatenating “Year” and “_Country Name”. In the Remittance Paid, Remittance Received, FTRI and AML Index data files, a key same as ‘Secondary key’ is created by concatenating “Year” and “_Country Name”. Using the common key, the data is joined in each ‘Sending Country’ and ‘Receiving Country’ data files. The combined data available for the study is from 2011 to 2023. Missing values are not imputed in the panel data.
提供机构:
ICPSR - Interuniversity Consortium for Political and Social Research
创建时间:
2025-04-14
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CHARLS

中国健康与养老追踪调查(CHARLS)数据集,旨在收集反映中国45岁及以上中老年人家庭和个人的高质量微观数据,用以分析人口老龄化问题,内容包括健康状况、经济状况、家庭结构和社会支持等。

charls.pku.edu.cn 收录

TCIA

TCIA(The Cancer Imaging Archive)是一个公开的癌症影像数据集,包含多种癌症类型的医学影像数据,如CT、MRI、PET等。这些数据通常与临床和病理信息相结合,用于癌症研究和临床试验。

www.cancerimagingarchive.net 收录

mmlu_eval

该数据集用于评估和比较不同模型的推理能力。它包含多个特征,如问题、主题、选项、答案、输入、基线模型输出、混合推理模型输出和评估结果。数据集分为一个验证集,包含1531个样本。数据集的大小为10295402字节,下载大小为4908248字节。

huggingface 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录