five

Landscape Evaporative Response Index (LERI): A high resolution monitoring and assessment of evapotranspiration across the Contiguous United States|蒸散发监测数据集|干旱预警数据集

收藏
DataCite Commons2020-07-23 更新2024-07-13 收录
蒸散发监测
干旱预警
下载链接:
https://www.sciencebase.gov/catalog/item/5c8020d7e4b0938824459be9
下载链接
链接失效反馈
资源简介:
Landscape Evaporative Response Index (LERI) is remotely-sensed high-resolution information of the evaporative response from the land in near real time. LERI assesses anomalies in actual evapotranspiration (ETa), as percentiles, across the Contiguous US and northern Mexico at a 1-km spatial resolution. LERI is based on the ETa data produced by the U. S. Geological Survey using the operational Simplified Surface Energy Balance (SSEBop) model. SSEBop combines evapotranspiration fraction generated from remotely sensed MODIS thermal imagery, acquired every 8 days, with climatological atmospheric evaporative demand. To quantify LERI, a rank-based, non-parametric method is used to estimate percentiles of the SSEBop ETa, over a period of ETa accumulation, compared to the available period of record (January 2000 to present). LERI percentiles are also binned into four drought categories (LD0 - LD3) analogous to the US Drought Monitor (USDM) categories (i.e. D0-D3) and using the same percentile breaks that USDM considers for soil moisture. By its numerical design, LERI essentially represents the evaporative response of the landscape driven primarily by the anomalous state of soil moisture to meet the climatological atmospheric demand through a combination of evaporation (from soil and leaf surfaces) and transpiration (root-stomata-air) processes. Real-time and high-resolution assessment of this soil moisture state is extremely salient to understanding and forecasting ecological responses. LERI serves as an experimental drought-monitoring and early warning guidance tool and has the potential to inform research into understanding characteristics of Ecological Drought. Preliminary work finds LERI to closely track modeled moisture conditions in the upper soil layers (~10 cm). LERI can complement other drought-monitoring indices and modeled soil moisture products. Work is ongoing to assess LERI’s ability to capture signals of drought early warning, and its unique ability to assess land-surface moisture state. LERI maps, and spatial and historical time series data could be accessed at https://www.esrl.noaa.gov/psd/leri/.
提供机构:
National and Regional Climate Adaptation Science Centers
创建时间:
2019-05-22
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

HUSTbearing dataset

该数据集包含轴承在九种不同健康状态下的振动信号,涵盖四种不同的操作条件。这些数据集公开可用,任何人都可以使用它们来验证滚动轴承的诊断算法。

github 收录

轴承故障数据集

本项目集成了多个公开的轴承故障数据集,所有数据均被处理为1秒/个的数据样本,并使用fft得到其频域特征。支持通过数据集、通道、故障、严重程度对所有样本进行筛选,并选择时域或频域显示。

github 收录

CRACK500

For the details of the work, the readers are refer to the paper "Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection" (FPHB), T-ITS 2019. You can find the paper in https://www.researchgate.net/publication/330244656_Feature_Pyramid_and_Hierarchical_Boosting_Network_for_Pavement_Crack_Detection or https://arxiv.org/abs/1901.06340.

Papers with Code 收录

TUT dataset

TUT数据集用于结构裂缝分割模型CrackSCF的训练和测试。

github 收录

Case Western Reserve University Bearing Dataset

该数据集广泛用于旋转机械的故障诊断和预测。它包含了驱动端和风扇端的振动信号,用于分类不同类型的轴承故障及其严重程度。

github 收录