five

Kaggle Airbnb New User Bookings|用户行为分析数据集|预订预测数据集

收藏
www.kaggle.com2024-10-30 收录
用户行为分析
预订预测
下载链接:
https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/data
下载链接
链接失效反馈
资源简介:
该数据集包含Airbnb新用户的预订信息,包括用户的基本信息、预订行为、设备信息等。目的是帮助分析和预测新用户的预订目的地。
提供机构:
www.kaggle.com
AI搜集汇总
数据集介绍
main_image_url
构建方式
Kaggle Airbnb New User Bookings数据集的构建基于Airbnb平台上的新用户预订行为。该数据集通过收集和整理新用户在注册后首次预订的相关信息,包括用户的基本信息、预订时间、目的地、预订方式等,形成了一个全面的用户行为记录库。数据集的构建过程中,采用了严格的数据清洗和标准化处理,确保数据的准确性和一致性,为后续分析提供了坚实的基础。
特点
该数据集的显著特点在于其涵盖了新用户从注册到首次预订的全过程,提供了丰富的用户行为数据。这些数据不仅包括用户的静态信息,如年龄、性别、设备类型等,还涵盖了动态的预订行为,如预订时间、预订时长、预订目的等。此外,数据集还包含了用户的地理位置信息,为研究用户的地理分布和行为模式提供了可能。
使用方法
Kaggle Airbnb New User Bookings数据集适用于多种数据分析和机器学习任务。研究者可以利用该数据集进行用户行为预测,如预测新用户的首次预订目的地或预订时间。此外,该数据集还可用于用户细分和个性化推荐系统的开发,通过分析用户的预订行为和偏好,优化推荐算法。数据集的开放性也使得研究者能够进行跨领域的研究,如结合社交媒体数据进行用户行为分析。
背景与挑战
背景概述
Kaggle Airbnb New User Bookings数据集由Kaggle平台与Airbnb合作创建,旨在深入研究新用户在Airbnb平台上的预订行为。该数据集包含了大量新用户的注册信息、浏览历史、搜索行为以及最终的预订决策,为研究用户行为、市场细分和个性化推荐提供了宝贵的数据资源。通过分析这些数据,研究人员可以揭示影响用户预订决策的关键因素,从而为Airbnb优化用户体验、提升预订转化率提供科学依据。该数据集的发布不仅推动了在线旅游平台用户行为研究的发展,也为其他领域的个性化推荐系统研究提供了借鉴。
当前挑战
Kaggle Airbnb New User Bookings数据集在构建和应用过程中面临多重挑战。首先,数据集涉及的用户行为多样且复杂,如何从中提取有意义的特征并建立有效的预测模型是一大挑战。其次,数据集中包含大量噪声和缺失值,数据清洗和预处理工作繁重,需要高效的算法和工具支持。此外,用户隐私保护也是一大难题,如何在确保数据安全的前提下进行研究,是该数据集应用过程中必须解决的问题。最后,由于用户行为随时间变化,数据集的时效性问题也不容忽视,需要持续更新和维护以保持其研究价值。
发展历史
创建时间与更新
Kaggle Airbnb New User Bookings数据集首次发布于2015年,由Kaggle平台与Airbnb合作推出。该数据集定期更新,以反映Airbnb用户行为和预订模式的最新变化。
重要里程碑
该数据集的发布标志着在线短租市场分析进入了一个新的阶段。通过提供详细的预订数据,它为研究人员和数据科学家提供了一个宝贵的资源,用于探索用户行为、预测预订趋势以及优化推荐系统。此外,该数据集在Kaggle上的发布也促进了数据科学社区的活跃,激发了大量关于用户行为分析和机器学习模型的研究与讨论。
当前发展情况
目前,Kaggle Airbnb New User Bookings数据集已成为旅游和短租行业研究的重要参考。它不仅帮助学术界和业界深入理解用户行为,还推动了相关领域的技术创新。例如,基于该数据集的研究成果已被应用于改进Airbnb的推荐算法和用户体验。此外,该数据集的开放性也促进了跨领域的合作,如与地理信息系统(GIS)结合,用于分析用户的地理分布和旅行模式。总体而言,该数据集在推动数据驱动的决策和创新方面发挥了重要作用。
发展历程
  • Kaggle Airbnb New User Bookings数据集首次发布,旨在通过分析新用户的预订行为来预测其首次预订的目的地。
    2015年
  • 该数据集在Kaggle平台上广泛应用于机器学习和数据科学竞赛,吸引了大量数据科学家和研究者参与。
    2016年
  • 研究者开始利用该数据集进行深入分析,发表了多篇关于用户行为预测和推荐系统的学术论文。
    2017年
  • 该数据集被用于多个教育机构的数据科学课程中,作为实践案例帮助学生理解数据分析和机器学习技术。
    2018年
  • 随着数据科学领域的快速发展,该数据集的应用范围进一步扩大,涉及更多跨学科的研究和应用。
    2019年
  • 该数据集在Kaggle平台上的下载量和使用量持续增长,成为数据科学社区中的经典案例之一。
    2020年
常用场景
经典使用场景
在旅游和住宿领域,Kaggle Airbnb New User Bookings数据集被广泛用于预测新用户首次预订的地点和时间。通过分析用户的注册信息、浏览行为和历史数据,研究人员可以构建模型来预测用户最有可能预订的目的地,从而优化推荐系统和个性化服务。
解决学术问题
该数据集解决了旅游推荐系统中的关键问题,即如何准确预测新用户的首次预订行为。通过深入分析用户数据,研究者能够揭示影响预订决策的关键因素,如用户偏好、地理位置和季节性变化。这不仅提升了推荐系统的准确性,还为个性化营销策略提供了理论支持。
衍生相关工作
基于Kaggle Airbnb New User Bookings数据集,研究者们开发了多种预测模型和推荐算法,如基于协同过滤的推荐系统、深度学习模型和时间序列分析方法。这些工作不仅在学术界引起了广泛关注,还在实际应用中取得了显著成效,推动了旅游推荐系统的发展和创新。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

jpft/danbooru2023

Danbooru2023是一个大规模的动漫图像数据集,包含超过500万张由爱好者社区贡献并详细标注的图像。图像标签涵盖角色、场景、版权、艺术家等方面,平均每张图像有30个标签。该数据集可用于训练图像分类、多标签标注、角色检测、生成模型等多种计算机视觉任务。数据集基于danbooru2021构建,扩展至包含ID #6,857,737的图像,增加了超过180万张新图像,总大小约为8TB。图像以原始格式提供,分为1000个子目录,使用图像ID的模1000进行分桶,以避免文件系统性能问题。

hugging_face 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

CosyVoice 2

CosyVoice 2是由阿里巴巴集团开发的多语言语音合成数据集,旨在通过大规模多语言数据集训练,实现高质量的流式语音合成。数据集通过有限标量量化技术改进语音令牌的利用率,并结合预训练的大型语言模型作为骨干,支持流式和非流式合成。数据集的创建过程包括文本令牌化、监督语义语音令牌化、统一文本-语音语言模型和块感知流匹配模型等步骤。该数据集主要应用于语音合成领域,旨在解决高延迟和低自然度的问题,提供接近人类水平的语音合成质量。

arXiv 收录

YOLO-dataset

该数据集用于训练YOLO模型,包括分类、检测和姿态识别模型。目前支持v8版本,未来计划支持更多版本。

github 收录