RAVDESS (The Ryerson Audio-Visual Database of Emotional Speech and Song)|情感识别数据集|音频处理数据集
收藏
- RAVDESS数据集首次发表,由加拿大瑞尔森大学的多伦多情感语音和歌曲数据库团队创建,旨在提供一个标准化的音频和视频数据集,用于情感识别研究。
- RAVDESS数据集首次应用于多个情感识别研究项目,包括语音情感识别和音乐情感分析,展示了其在情感计算领域的广泛适用性。
- RAVDESS数据集被多个国际会议和期刊引用,成为情感计算领域的重要基准数据集之一,推动了相关研究的发展。
- RAVDESS数据集的应用扩展到跨模态情感识别研究,结合音频和视频数据进行更复杂的情感分析,进一步提升了其在多模态研究中的地位。
- 1The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American EnglishRyerson University · 2018年
- 2Emotion Recognition in Speech Using Deep Neural NetworksUniversity of Surrey · 2019年
- 3A Comparative Study of Deep Learning Models for Emotion Recognition in SpeechUniversity of Twente · 2020年
- 4Multimodal Emotion Recognition Using Deep Learning on the RAVDESS DatasetUniversity of California, Irvine · 2021年
- 5Transfer Learning for Emotion Recognition in Speech Using RAVDESS DatasetUniversity of Texas at Dallas · 2022年
SECOM
SECOM数据集包含590个实例,每个实例有590个特征,主要用于半导体制造过程中的质量控制。数据集中的特征包括各种传感器读数和制造过程中的参数。目标变量是一个二进制标签,表示制造过程是否成功。
archive.ics.uci.edu 收录
Google Images
The Google Images Search API allows developers to retrieve images related to a specific query topic from Google's vast image index. This API is useful for applications needing image search capabilities, such as media galleries,marketing tools, educational tools, or content enrichment features.
RapidAPI 收录
SECOND (SEmantic Change detectiON Dataset)
SECOND is a well-annotated semantic change detection dataset. To ensure data diversity, we firstly collect 4662 pairs of aerial images from several platforms and sensors. These pairs of images are distributed over the cities such as Hangzhou, Chengdu, and Shanghai. Each image has size 512 x 512 and is annotated at the pixel level. The annotation of SECOND is carried out by an expert group of earth vision applications, which guarantees high label accuracy. For the change category in the SECOND dataset, we focus on 6 main land-cover classes, i.e. , non-vegetated ground surface, tree, low vegetation, water, buildings and playgrounds , that are frequently involved in natural and man-made geographical changes. It is worth noticing that, in the new dataset, non-vegetated ground surface ( n.v.g. surface for short) mainly corresponds to impervious surface and bare land. In summary, these 6 selected land-cover categories result in 30 common change categories (including non-change ). Through the
Papers with Code 收录
LibriSpeech
LibriSpeech 是一个大约 1000 小时的 16kHz 英语朗读语音语料库,由 Vassil Panayotov 在 Daniel Povey 的协助下编写。数据来自 LibriVox 项目的已读有声读物,并经过仔细分割和对齐。
OpenDataLab 收录
作物病害领域多模态数据集(CDDM)
CDDM数据集是由中国联通AI创新中心和中国联通数字技术公司创建的多模态数据集,包含137,000张不同作物病害的图片和100万条关于农业知识的问题-答案对。这些数据覆盖了从病害识别到管理实践的广泛农业知识。数据集的构建目的是为了推动农业研究领域的多模态学习技术发展,通过整合视觉和文本数据,促进精细化的问答系统开发,为农民和农业专业人士提供精确、有用的建议。
arXiv 收录