five

NanKai Sonar Image Dataset (NKSID)|水下声纳图像数据集|目标识别数据集

收藏
github2024-04-11 更新2024-05-31 收录
水下声纳图像
目标识别
下载链接:
https://github.com/Jorwnpay/NK-Sonar-Image-Dataset
下载链接
链接失效反馈
资源简介:
该数据集包含2617张来自8个类别的图像,标签显示自然长尾分布。数据收集发生在渤海湾,使用配备多波束前视声纳的遥控潜水器捕捉水下数据。为了减少目标间的干扰并便于定位,目标通过绳索连接到浮标,并悬挂在水面下约5-10米处。数据收集过程中,从不同视角、距离(2-15米)和频率(750kHz, 1.2MHz)捕捉每个目标的图像,以增强数据集的丰富性。

This dataset comprises 2,617 images from 8 categories, exhibiting a natural long-tail distribution in their labels. The data collection took place in the Bohai Bay, where a remotely operated vehicle equipped with a multibeam forward-looking sonar was utilized to capture underwater data. To minimize interference between targets and facilitate positioning, each target was tethered to a buoy and suspended approximately 5-10 meters below the water surface. During the data collection process, images of each target were captured from various angles, distances (2-15 meters), and frequencies (750kHz, 1.2MHz) to enhance the richness of the dataset.
创建时间:
2023-11-30
原始信息汇总

NK-Sonar-Image-Dataset (NKSID) 概述

数据集基本信息

  • 名称: NanKai Sonar Image Dataset (NKSID)
  • 类别数: 8
  • 图像数量: 2617
  • 数据收集地点: Bohai Bay ($39^circ N 118^circ E$)
  • 数据收集工具: 配备Oculus M750d多波束前视声呐的遥控潜水器(ROV)
  • 图像特征: 目标通过绳索附着在浮标上,悬挂在水面下约5-10米,从不同角度、距离(2-15m)和频率(750kHz, 1.2MHz)捕捉
  • 数据处理: 目标选择、预处理和标注

数据集使用

  • 下载与解压: 从仓库直接下载并解压所有.zip文件,每个类别的图像单独压缩
  • 文件说明:
    • train_abs.txt: 包含每个图像的相对路径和标签
    • kfold_train.txtkfold_val.txt: 存储十折交叉验证的随机训练集/验证集分割,$n$表示样本索引,对应train_abs.txt中的第$n$行

示例应用

引用信息

  • 论文引用: latex @article{jiao2024open, title={Open-set recognition with long-tail sonar images}, author={Jiao, Wenpei and Zhang, Jianlei and Zhang, Chunyan}, journal={Expert Systems with Applications}, pages={123495}, year={2024}, publisher={Elsevier} }
AI搜集汇总
数据集介绍
main_image_url
构建方式
在渤海湾(39°N 118°E)进行的实地数据采集过程中,研究团队采用了一台配备多波束前视声呐(Oculus M750d)的遥控潜水器(ROV),以捕捉水下目标的图像数据。为减少目标间的干扰并便于定位,目标通过绳索悬挂在浮标上,深度约为5至10米。数据采集时,从不同视角、距离(2-15米)和频率(750kHz, 1.2MHz)对目标进行拍摄,以丰富数据集的多样性。随后,经过目标筛选、预处理和标注,最终形成了包含2617张图像的八类数据集,展现了自然的长尾分布特征。
特点
NKSID数据集的显著特点在于其自然的长尾分布,这种分布反映了实际应用中常见的类别不平衡问题。此外,数据集通过多视角、多距离和多频率的采集方式,确保了图像数据的多样性和复杂性,为声呐图像识别研究提供了丰富的实验素材。每个类别的图像数量差异较大,这种不平衡性为研究者提供了在长尾分布下进行模型训练和评估的理想平台。
使用方法
用户可直接从GitHub仓库下载数据集,并解压所有.zip文件。由于单个文件大小超过GitHub上传限制,每个类别的图像被分别压缩。train_abs.txt文件包含了每张图像的相对路径和标签信息。kfold_train.txt和kfold_val.txt文件存储了十折交叉验证的训练集和验证集划分,其中数字n代表样本索引,对应于train_abs.txt文件中的第n行。此外,用户可参考[Jorwnpay/Sonar-OLTR](https://github.com/Jorwnpay/Sonar-OLTR)仓库中的示例,了解如何使用该数据集进行开放集长尾识别研究。
背景与挑战
背景概述
南开声呐图像数据集(NanKai Sonar Image Dataset, NKSID)是由南开大学团队创建的一个新型前视声呐图像识别基准数据集。该数据集于渤海湾(39°N 118°E)采集,使用配备多波束前视声呐(Oculus M750d)的遥控潜水器(ROV)进行水下数据捕获。数据集包含2617张图像,涵盖8个类别,标签呈现自然的长尾分布。NKSID的创建旨在解决水下目标识别中的复杂问题,通过多视角、多距离和多频率的图像采集,增强了数据集的多样性和实用性。该数据集的发布为水下声呐图像识别领域提供了重要的研究资源,推动了相关技术的进步。
当前挑战
NKSID在构建过程中面临多项挑战。首先,水下环境的复杂性导致数据采集难度较大,目标与背景的干扰问题尤为突出。其次,声呐图像的特性使得图像预处理和标注工作变得复杂,尤其是在处理长尾分布的数据时,如何确保分类模型的公平性和准确性是一个重要挑战。此外,由于单个文件大小限制,数据集的存储和分发也面临技术难题,需将每个类别的图像分别压缩。这些挑战不仅反映了水下声呐图像识别领域的技术瓶颈,也为未来的研究提供了方向。
常用场景
经典使用场景
南开声呐图像数据集(NKSID)在声呐图像识别领域具有广泛的应用前景。该数据集包含了2617张来自8个类别的图像,这些图像展示了自然的长尾分布特征。经典的使用场景包括但不限于声呐图像的分类、目标检测和识别任务。通过利用多波束前视声呐(Oculus M750d)采集的数据,NKSID为研究人员提供了一个丰富的数据资源,用于开发和验证声呐图像处理算法,特别是在复杂水下环境中的目标识别和分类任务。
实际应用
在实际应用中,NKSID数据集被广泛应用于水下目标识别和分类任务。例如,在海洋资源勘探、水下考古、以及军事侦察等领域,声呐图像的准确识别和分类是关键技术。NKSID通过提供多样化的声呐图像数据,帮助开发更高效、更精确的识别算法,从而提升了这些领域的实际操作效率和安全性。此外,该数据集还支持多频率和多视角的声呐图像分析,进一步增强了其在实际应用中的价值。
衍生相关工作
NKSID数据集的发布催生了一系列相关的经典工作。例如,基于该数据集的研究已经扩展到了开放集长尾识别(Open-set Long-tail Recognition)领域,相关工作在[Jorwnpay/Sonar-OLTR](https://github.com/Jorwnpay/Sonar-OLTR)中得到了展示。此外,NKSID还激发了对声呐图像处理算法的研究,包括但不限于深度学习模型的优化、数据增强技术的应用以及多模态数据融合等。这些衍生工作不仅丰富了声呐图像识别的理论体系,也为实际应用提供了强有力的技术支持。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

中国行政区划数据

本项目为中国行政区划数据,包括省级、地级、县级、乡级和村级五级行政区划数据。数据来源于国家统计局,存储格式为sqlite3 db文件,支持直接使用数据库连接工具打开。

github 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录