five

General-Disorders-EEG-Dataset-v1|神经疾病数据集|EEG数据数据集

收藏
huggingface2024-10-05 更新2024-12-12 收录
神经疾病
EEG数据
下载链接:
https://huggingface.co/datasets/Neurazum/General-Disorders-EEG-Dataset-v1
下载链接
链接失效反馈
资源简介:
这是一个由‘bai’模型生成的合成EEG数据集,基于真实数据。数据集包含1140个特征列,涵盖了性别、年龄、教育水平、IQ等基本信息,以及主要和具体的疾病分类。数据集内容包括强迫症、双相情感障碍、精神分裂症等多种神经和精神疾病。数据集由Neurazum开发和发布,遵循Apache 2.0许可证。
创建时间:
2024-10-02
原始信息汇总

数据集概述

基本信息

  • 名称: Disorders EEG Data
  • 许可证: Apache 2.0
  • 语言: 英语
  • 标签: 神经科学, 大脑, EEG, 数据集, 疾病, 合成, AI, 神经, Neura
  • 数据量: 1K<n<10K

数据集描述

  • 数据类型: 合成EEG数据
  • 生成模型: 基于真实数据的‘bai’模型

特征/列

  • No: 编号
  • Sex: 性别
  • Age: 参与者年龄
  • EEG Date: EEG日期
  • Education: 教育水平
  • IQ: 参与者IQ水平
  • Main Disorder: 疾病的主要分类定义
  • Specific Disorder: 疾病的具体分类定义
  • 总特征/列数: 1140

内容

  • 强迫症
  • 双相情感障碍
  • 精神分裂症
  • 抑郁症
  • 社交焦虑症
  • 成瘾障碍
  • 酒精使用障碍

开发者与发布者

  • 开发者: Neurazum
AI搜集汇总
数据集介绍
main_image_url
构建方式
General-Disorders-EEG-Dataset-v1数据集是通过‘bai’模型基于真实数据生成的合成脑电图(EEG)数据。该模型利用先进的神经网络技术,模拟了多种精神障碍患者的脑电活动,确保了数据的多样性和真实性。数据集的构建过程严格遵循科学规范,涵盖了从数据采集到模型训练的各个环节,确保了数据的可靠性和有效性。
特点
该数据集包含了1140个特征/列,涵盖了参与者的性别、年龄、教育水平、智商等基本信息,以及脑电图日期、主要障碍类别和具体障碍类别等详细内容。数据集特别关注了强迫症、双相情感障碍、精神分裂症、抑郁症、社交焦虑症、成瘾障碍和酒精使用障碍等多种精神障碍,为研究者提供了丰富的研究素材。
使用方法
General-Disorders-EEG-Dataset-v1数据集适用于神经科学、精神医学等领域的研究。研究者可以通过分析数据集中的脑电图数据,探索不同精神障碍的脑电活动特征,进而开发新的诊断工具或治疗方法。数据集的使用需遵循Apache 2.0许可协议,确保在合法合规的前提下进行科学研究。
背景与挑战
背景概述
General-Disorders-EEG-Dataset-v1是由Neurazum开发并发布的一个合成脑电图(EEG)数据集,旨在为神经科学领域的研究提供支持。该数据集基于真实数据,通过‘bai’模型生成,涵盖了多种精神障碍类别,包括强迫症、双相情感障碍、精神分裂症等。数据集的创建时间为近期,反映了当前神经科学研究中对精神障碍诊断与治疗的迫切需求。通过提供多样化的EEG数据,该数据集为研究人员探索脑电波与精神障碍之间的关系提供了重要资源,推动了神经科学和人工智能在医疗领域的交叉应用。
当前挑战
General-Disorders-EEG-Dataset-v1面临的挑战主要集中在两个方面。首先,尽管数据集通过合成方法生成,但其与真实EEG数据的相似性和有效性仍需进一步验证,以确保研究结果的可靠性。其次,精神障碍的多样性和复杂性对数据标注和分类提出了较高要求,如何准确区分不同障碍类别并捕捉其细微差异是数据集构建中的一大难题。此外,EEG数据的高维性和噪声干扰也为数据预处理和分析带来了技术挑战,需要开发更高效的算法和模型以提取有用信息。
常用场景
经典使用场景
General-Disorders-EEG-Dataset-v1数据集在神经科学研究中具有重要应用,特别是在精神障碍的脑电图(EEG)分析领域。该数据集通过合成EEG数据,模拟了多种常见精神障碍的脑电活动模式,如强迫症、双相情感障碍和精神分裂症等。研究人员可以利用这些数据来训练和验证机器学习模型,以识别和分类不同的精神障碍。
解决学术问题
该数据集解决了精神障碍研究中数据稀缺和隐私保护的问题。通过合成EEG数据,研究人员可以在不侵犯患者隐私的情况下,获得大量高质量的脑电数据。这不仅有助于提高精神障碍的诊断准确性,还为开发新的治疗方法和干预措施提供了数据支持。
衍生相关工作
基于General-Disorders-EEG-Dataset-v1数据集,许多经典研究工作得以展开。例如,研究人员开发了基于深度学习的EEG信号分类模型,能够准确识别不同类型的精神障碍。此外,该数据集还促进了跨学科合作,推动了神经科学、心理学和计算机科学在精神障碍研究中的融合。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

jpft/danbooru2023

Danbooru2023是一个大规模的动漫图像数据集,包含超过500万张由爱好者社区贡献并详细标注的图像。图像标签涵盖角色、场景、版权、艺术家等方面,平均每张图像有30个标签。该数据集可用于训练图像分类、多标签标注、角色检测、生成模型等多种计算机视觉任务。数据集基于danbooru2021构建,扩展至包含ID #6,857,737的图像,增加了超过180万张新图像,总大小约为8TB。图像以原始格式提供,分为1000个子目录,使用图像ID的模1000进行分桶,以避免文件系统性能问题。

hugging_face 收录

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录