five

BatteryLife|电池寿命预测数据集|电化学数据集

收藏
arXiv2025-02-27 更新2025-02-28 收录
电池寿命预测
电化学
下载链接:
https://github.com/Ruifeng-Tan/BatteryLife
下载链接
链接失效反馈
资源简介:
BatteryLife数据集是由香港科技大学(广州)等机构提出的一个全面电池寿命预测数据集。该数据集整合了16个数据集,包含超过90,000个样本,是迄今为止最大的电池寿命数据集。它提供了包括锂离子、锌离子和钠离子电池在内的多种类型电池,覆盖了8种格式、80种化学系统、12种操作温度和646种充放电协议,具有前所未有的多样性。该数据集既包括实验室测试数据,也包括工业测试数据,为电池寿命预测研究提供了丰富的资源。
提供机构:
香港科技大学(广州)
创建时间:
2025-02-26
AI搜集汇总
数据集介绍
main_image_url
构建方式
BatteryLife 数据集的构建是通过整合16个数据集完成的,这些数据集包含了实验室测试和工业测试的数据。该数据集的规模是之前最大数据集的2.4倍,提供了超过90,000个样本,覆盖了8种电池格式、80种化学系统、12种操作温度和646种充放电协议。此外,BatteryLife 是第一个发布锌离子电池、钠离子电池和工业测试的大容量锂离子电池寿命数据集。
特点
BatteryLife 数据集的特点是规模大、多样性高。它提供了前所未有的多样性,包括4倍的格式、16倍的化学系统、2.4倍的运行温度和3.4倍的充放电协议,相比于之前的最大数据集 BatteryML [50]。此外,BatteryLife 还包含了实验室测试的锂离子、钠离子和锌离子电池寿命数据,以及工业测试的大容量锂离子电池寿命数据。
使用方法
BatteryLife 数据集的使用方法包括以下步骤:首先,将数据集分为训练集、验证集和测试集。然后,对原始循环数据进行线性插值和归一化处理。接下来,使用机器学习模型对处理后的数据进行训练,并使用平均绝对百分比误差 (MAPE) 和 15% 准确率 (15%-Acc) 两个指标来评估模型性能。此外,BatteryLife 还提供了一个 CyclePatch 插件技术,可以应用于一系列神经网络中,以改进模型性能。
背景与挑战
背景概述
在当前社会,可充电电池广泛应用于电动汽车、电网和便携式设备等领域。然而,由于电池内部的电化学反应机制,电池在循环使用过程中会不可避免地发生退化,导致可用时间缩短,并可能引发安全问题。为了确保电池的安全和可持续运行,电池工程师和科学家需要进行退化测试以测量电池寿命。然而,这些测试通常耗时较长,因为电池寿命的下降是非线性的,需要数月甚至数年才能达到电池寿命的终点。因此,电池寿命预测(BLP)变得至关重要。BLP研究依赖于电池退化测试产生的时间序列数据,对于电池的利用、优化和生产具有重要意义。BatteryLife数据集的创建旨在解决现有数据集规模有限、数据多样性不足和基准不一致的问题,从而为电池寿命预测提供更全面、更准确的数据支持。
当前挑战
BatteryLife数据集面临的主要挑战包括:1)数据集规模有限,难以深入了解现代电池寿命数据;2)数据多样性不足,大多数数据集仅限于实验室测试的小型锂离子电池,且测试条件单一,难以推广;3)基准不一致,现有研究采用不同的数据集和实验设置,难以评估基准的有效性。为了解决这些挑战,BatteryLife数据集整合了16个数据集,样本量是之前最大数据集的2.4倍,并提供了最多样化的电池寿命资源,包括8种电池格式、80种化学体系、12种工作温度和646种充放电协议。BatteryLife数据集还首次发布了锌离子电池、钠离子电池和工业测试的大型锂离子电池的电池寿命数据集。此外,BatteryLife数据集还提供了一个统一的实验设置,支持从1到100个循环的电池寿命预测,覆盖了广泛的应用场景。
常用场景
经典使用场景
BatteryLife数据集是电池寿命预测领域的重要资源,它通过整合16个数据集,提供了超过90,000个样本,是迄今为止最大的电池寿命数据集。这使得研究人员能够深入了解现代电池寿命数据,并推动电池寿命预测模型的研发。此外,BatteryLife数据集提供了最多样化的电池寿命资源,涵盖了8种电池格式、80种化学系统、12种操作温度和646种充放电协议,包括实验室和工业测试。这使得模型能够在不同的测试条件下学习电池寿命的基本模式,并提高其泛化能力。
衍生相关工作
BatteryLife数据集的提出,为电池寿命预测领域的研究提供了新的思路和方向。基于BatteryLife数据集,研究人员可以开发更精确、更有效的电池寿命预测模型,并探索新的研究问题。此外,BatteryLife数据集还可以与其他数据集结合,构建更全面的电池寿命预测模型,推动电池寿命预测领域的发展。
数据集最近研究
最新研究方向
BatteryLife数据集为电池寿命预测领域带来了突破性的进展,它不仅提供了迄今为止最大规模的电池寿命数据集,还涵盖了多种电池类型和测试条件,极大地丰富了数据多样性。该数据集的发布解决了现有数据集规模有限、数据多样性不足以及缺乏统一基准的问题,为电池寿命预测研究提供了强有力的支持。基于BatteryLife数据集的研究表明,传统的时序分析方法并不适用于电池寿命预测,而CyclePatch等新型插接技术能够显著提高模型性能,为该领域的研究提供了新的思路和方法。此外,BatteryLife数据集还揭示了模型在不同老化条件和领域中的可迁移性,为未来研究指明了方向。
相关研究论文
  • 1
    BatteryLife: A Comprehensive Dataset and Benchmark for Battery Life Prediction香港科技大学(广州) · 2025年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

中国裁判文书网

中国裁判文书网是中国最高人民法院设立的官方网站,旨在公开各级法院的裁判文书。该数据集包含了大量的法律文书,如判决书、裁定书、调解书等,涵盖了民事、刑事、行政、知识产权等多个法律领域。

wenshu.court.gov.cn 收录

CAMUS_public-ImageMask-Dataset

这是一个用于图像分割的CAMUS_public(心脏多结构超声分割采集)数据集。该数据集包含来自500名患者的临床检查,这些检查在法国圣艾蒂安大学医院进行,并根据当地伦理委员会的规定进行了完全匿名化处理。数据集旨在执行左心室射血分数测量,并反映了临床实践中的数据多样性,包括图像质量和病理情况的广泛变异。数据集分为训练集(450名患者)和测试集(50名新患者),原始输入图像以raw/mhd文件格式提供。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录