five

Flickr30k

收藏
www.kaggle.com2024-12-25 收录
下载链接:
https://www.kaggle.com/datasets/eeshawn/flickr30k
下载链接
链接失效反馈
资源简介:
Flickr30k 数据集是Flickr8k的扩展版本,包含3万张图像和每张图像5个描述。它广泛用于图像生成文本任务,并且是图像标注领域的标准数据集之一。
提供机构:
www.kaggle.com
AI搜集汇总
数据集介绍
main_image_url
构建方式
Flickr30k数据集的构建源于对图像与文本之间关系的深入探索。该数据集通过从Flickr平台上精选出31,783张图片,并为每张图片配备了五条独立的英文描述,这些描述由众包工作者精心撰写,确保了描述的多样性和准确性。这一构建过程不仅注重图像的质量,还强调了文本描述的丰富性,为后续的多模态研究奠定了坚实的基础。
使用方法
Flickr30k数据集在计算机视觉和自然语言处理领域具有广泛的应用价值。研究人员可以通过该数据集训练和评估图像描述生成模型,探索图像与文本之间的语义关联。此外,该数据集还可用于文本-图像检索任务,通过匹配文本描述与图像内容,提升检索系统的性能。在实际使用中,用户可以将数据集划分为训练集、验证集和测试集,以进行模型的训练、调优和评估,从而推动多模态研究的前沿发展。
背景与挑战
背景概述
Flickr30k数据集于2014年由密歇根大学的研究团队发布,旨在推动图像描述生成领域的研究。该数据集包含31,783张从Flickr平台收集的图片,每张图片配有5条人工撰写的英文描述,涵盖了丰富的视觉场景和语言表达。Flickr30k的发布为计算机视觉与自然语言处理的交叉研究提供了重要资源,尤其在图像到文本的生成任务中,成为评估模型性能的基准数据集之一。其多样化的图像内容和高质量的语言标注,极大地促进了图像理解与生成技术的发展。
当前挑战
Flickr30k数据集在解决图像描述生成问题时,面临的主要挑战包括描述的语言多样性与图像内容的复杂性。由于每张图片配有5条描述,模型需要捕捉不同描述之间的细微差异,同时确保生成的文本与图像内容高度一致。此外,构建过程中,研究人员需克服图像选择偏差和标注一致性问题,确保数据集的广泛代表性和高质量标注。这些挑战不仅考验模型的语义理解能力,也对数据集的构建方法提出了更高要求。
发展历史
创建时间与更新
Flickr30k数据集于2014年首次发布,旨在为图像描述生成任务提供丰富的视觉与语言数据。自发布以来,该数据集在计算机视觉与自然语言处理领域得到了广泛应用,并定期更新以保持其数据的时效性与多样性。
重要里程碑
Flickr30k数据集的发布标志着图像描述生成任务进入了一个新的阶段。2014年,该数据集首次引入,包含了31,783张图像,每张图像配有5条人工标注的描述文本,为研究者提供了高质量的视觉-语言对齐数据。2015年,该数据集被广泛应用于图像描述生成模型的训练与评估,推动了深度学习在该领域的发展。2017年,Flickr30k成为多模态学习研究的重要基准,促进了视觉问答、图像检索等任务的进步。2020年,随着多模态预训练模型的兴起,Flickr30k再次成为验证模型性能的关键数据集。
当前发展情况
目前,Flickr30k数据集在计算机视觉与自然语言处理的交叉领域仍占据重要地位。随着多模态学习技术的快速发展,该数据集被广泛用于训练和评估视觉-语言预训练模型,如CLIP和BLIP等。这些模型在图像描述生成、视觉问答和跨模态检索等任务中表现出色,进一步推动了人工智能在理解视觉与语言关系方面的进步。Flickr30k的持续影响力不仅体现在学术研究中,还在工业界的实际应用中发挥了重要作用,为智能图像搜索、内容生成等技术的发展提供了坚实的基础。
发展历程
  • Flickr30k数据集首次发布,该数据集包含31,783张图片,每张图片配有5个独立的英文描述,旨在为图像描述生成任务提供丰富的标注数据。
    2014年
  • Flickr30k被广泛应用于图像描述生成模型的训练与评估,成为该领域的重要基准数据集之一,推动了深度学习在自然语言处理与计算机视觉交叉领域的发展。
    2015年
  • 研究者们开始利用Flickr30k进行多模态学习研究,探索图像与文本之间的语义关联,为后续的视觉问答和跨模态检索任务奠定了基础。
    2016年
  • Flickr30k被扩展为多语言版本,支持多种语言的图像描述,进一步推动了跨语言图像描述生成的研究。
    2018年
  • Flickr30k在图像描述生成领域的基准测试中继续发挥重要作用,成为评估生成模型多样性和准确性的关键数据集之一。
    2020年
  • Flickr30k被用于训练和评估大规模预训练模型(如CLIP和BLIP),在多模态理解和生成任务中展现了其持续的价值。
    2022年
常用场景
经典使用场景
Flickr30k数据集在计算机视觉与自然语言处理的交叉领域中扮演着重要角色,特别是在图像描述生成任务中。该数据集包含了超过3万张图片,每张图片都配有5个独立的英文描述,为研究者提供了一个丰富的资源来训练和评估图像到文本的生成模型。通过这一数据集,研究者能够深入探索图像内容与语言表达之间的复杂关系。
解决学术问题
Flickr30k数据集有效地解决了图像描述生成中的多样性和准确性挑战。在学术研究中,该数据集帮助研究者开发出能够理解图像内容并生成连贯、相关描述的算法。这不仅推动了图像理解技术的发展,也为自然语言处理领域提供了新的研究方向,如多模态学习和跨模态检索。
实际应用
在实际应用中,Flickr30k数据集的应用广泛,尤其是在社交媒体内容管理、自动图像标注和辅助视觉障碍人士等方面。通过利用该数据集训练的模型,社交媒体平台能够自动生成图片描述,提升用户体验。同时,这些技术也为视觉障碍人士提供了通过听觉获取图像信息的可能,极大地增强了他们的信息获取能力。
数据集最近研究
最新研究方向
在计算机视觉与自然语言处理的交叉领域,Flickr30k数据集因其丰富的图像与文本标注对而备受关注。近年来,研究者们利用该数据集推动了图像描述生成、视觉问答以及跨模态检索等任务的发展。特别是在多模态预训练模型的兴起背景下,Flickr30k成为验证模型性能的重要基准之一。通过结合深度学习和注意力机制,研究者们能够更精准地捕捉图像与文本之间的语义关联,从而提升模型的泛化能力。此外,随着生成式人工智能的快速发展,基于Flickr30k的研究也在探索如何生成更具多样性和上下文一致性的图像描述。这些进展不仅推动了多模态理解技术的进步,也为实际应用如智能辅助系统和内容推荐提供了有力支持。
相关研究论文
  • 1
    Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence ModelsStanford University · 2015年
  • 2
    Deep Visual-Semantic Alignments for Generating Image DescriptionsStanford University · 2015年
  • 3
    Show, Attend and Tell: Neural Image Caption Generation with Visual AttentionUniversity of Montreal · 2015年
  • 4
    Bottom-Up and Top-Down Attention for Image Captioning and Visual Question AnsweringMicrosoft Research · 2018年
  • 5
    Unified Vision-Language Pre-Training for Image Captioning and VQAMicrosoft Research · 2020年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AutoCaption

这个数据集包含了两个子集,用于不同的视频理解任务训练和评估。sft_data 子集旨在为视频语言模型的监督微调提供训练数据,包含9419条记录。每个记录包含视频文件名和对话列表,对话列表中包含每个对话回合的发言者和消息内容。mcts_vcb 子集用于MCTS VCB评估,但目前没有记录。每个记录包含视频文件名和关键点列表,关键点列表中包含关键点描述、分类和阈值标准。

huggingface 收录

Wafer Defect

该数据集包含了七个主要类别的晶圆缺陷,分别是:BLOCK ETCH、COATING BAD、PARTICLE、PIQ PARTICLE、PO CONTAMINATION、SCRATCH和SEZ BURNT。这些类别涵盖了晶圆在生产过程中可能出现的多种缺陷类型,每一种缺陷都有其独特的成因和表现形式。数据集不仅在类别数量上具有多样性,而且在样本的多样性和复杂性上也展现了其广泛的应用潜力。每个类别的样本均经过精心标注,确保了数据的准确性和可靠性。

github 收录

BBGRE

The Brain & Body Genetic Resource Exchange (BBGRE) provides a resource for investigating the genetic basis of neurodisability. It combines phenotype information from patients with neurodevelopmental and behavioural problems with clinical genetic data, and displays this information on the human genome map.

国家生物信息中心 收录

OECD - Education at a Glance

该数据集提供了关于教育系统在不同国家和地区的详细统计数据,包括教育支出、教育参与率、教育成果、教师资源等多个方面。数据涵盖了OECD成员国以及部分非成员国。

www.oecd.org 收录

Tox21

Tox21数据集包含超过12,000种化学物质的生物活性数据,主要用于评估化学物质对12种不同生物学终点的毒性,包括核受体活性和应激反应。

tripod.nih.gov 收录