five

Waifu dataset|动漫角色数据集|虚拟人物数据集

收藏
github2024-02-22 更新2024-05-31 收录
动漫角色
虚拟人物
下载链接:
https://github.com/thewaifuproject/waifu-dataset
下载链接
链接失效反馈
资源简介:
一个包含超过15000个waifus信息的数据集,每个waifu包含年龄、别名、生日、血型、胸围、创作者信息、描述、展示图片、身高、臀围、ID、喜欢数、名称、来源、系列、标签、垃圾数、腰围、体重等详细信息。

A dataset containing information on over 15,000 waifus, each with detailed attributes including age, aliases, birthday, blood type, bust size, creator information, description, display images, height, hip size, ID, number of likes, name, origin, series, tags, number of dislikes, waist size, and weight.
创建时间:
2018-11-03
原始信息汇总

Waifu数据集概述

数据集内容

  • 名称: Yuuki Asuna
  • 年龄: 未提供
  • 别名: 風景 遼日向
  • 生日: 9月30日(年份未提供)
  • 血型: 未提供
  • 三围: 胸围82.00cm, 腰围60.00cm, 臀围83.00cm
  • 身高: 168.00cm
  • 体重: 55.00kg
  • 创作者信息:
    • ID: 42
    • 名称: Railtracks
    • 角色名: 未提供
  • 描述: Asuna是Kirito的朋友,也是血盟骑士团(KoB)的副团长,该公会约有三十名玩家,被称为艾恩葛朗特最强的公会。她是SAO中少数的女性玩家之一,因其出众的美貌而收到许多邀请和求婚。她是一位技巧高超的玩家,因其剑术非凡而获得“闪电闪”的称号。她的游戏昵称与真实姓名相同。
  • 展示图片: 链接
  • 来源: 日本
  • 所属系列:
    • 名称: Sword Art Online
    • 描述: 2022年,一款名为Sword Art Online(SAO)的虚拟现实大型多人在线角色扮演游戏(VRMMORPG)发布。使用NerveGear头盔,玩家可以通过大脑刺激体验和控制游戏角色。SAO和NerveGear由Akihiko Kayaba创建。
  • 标签:
    • 最差动漫
    • 垃圾
    • 白痴

数据集大小

  • 总大小: 3GB
  • 包含内容: 包括图像

数据集来源

数据集获取

  • 获取方式: 使用python scrapper.py脚本获取数据,数据存储于waifus.json文件中。
AI搜集汇总
数据集介绍
main_image_url
构建方式
Waifu数据集的构建过程主要依赖于网络爬虫技术,通过Python脚本从MyWaifuList网站中提取数据。具体步骤包括安装必要的Python依赖库,并运行scrapper.py脚本,该脚本自动抓取并整理相关数据,最终将所有信息存储为waifus.json文件。此外,数据集还包括了与角色相关的图像文件,总大小约为3GB,这些数据被托管在Kaggle平台上,便于用户下载和使用。
使用方法
使用Waifu数据集时,用户首先需要从Kaggle平台下载完整的数据集,包括waifus.json文件和相关的图像资源。通过解析JSON文件,用户可以获取每个角色的详细信息,并结合图像进行进一步的分析或应用。数据集适用于二次元文化研究、角色设计参考、机器学习模型训练等多种场景。用户还可以根据需求对数据进行筛选、分类或扩展,以满足特定的研究或开发目标。
背景与挑战
背景概述
Waifu数据集是一个专注于虚拟角色信息的集合,主要涵盖了动漫、游戏等二次元文化中的女性角色。该数据集由MyWaifuList平台提供,包含了角色的详细属性,如年龄、身高、体重、三围等,以及角色的背景故事和所属作品信息。数据集的核心研究问题在于如何通过结构化数据来分析和理解虚拟角色的特征及其在二次元文化中的影响力。该数据集的创建时间为2020年,主要研究人员或机构为MyWaifuList的开发团队。Waifu数据集为二次元文化研究、角色建模、推荐系统等领域提供了丰富的数据支持,推动了相关领域的研究进展。
当前挑战
Waifu数据集在解决虚拟角色特征分析问题时,面临的主要挑战包括数据的完整性和一致性。由于角色信息来源于用户生成内容,部分数据可能存在缺失或错误,如年龄、血型等字段的空值问题。此外,数据集的构建过程中,如何高效地从MyWaifuList平台抓取并整合大量数据也是一个技术难点。数据抓取过程中需要处理反爬虫机制、数据格式不统一等问题,确保数据的准确性和可用性。同时,数据集中的图像数据量较大,如何有效地存储和管理这些数据也是构建过程中需要解决的挑战之一。
常用场景
经典使用场景
Waifu数据集在动漫角色分析领域具有广泛的应用,尤其是在角色特征提取和用户偏好研究中。该数据集包含了大量动漫角色的详细信息,如年龄、身高、体重等,以及用户对这些角色的喜好程度。研究人员可以利用这些数据进行角色属性的统计分析,探索不同特征对用户偏好的影响。
解决学术问题
Waifu数据集为动漫角色研究提供了丰富的数据支持,解决了角色特征与用户偏好之间关系的研究难题。通过分析数据集中的角色属性和用户反馈,研究者可以深入探讨角色设计中的关键因素,如外貌特征、性格设定等对用户吸引力的影响。这不仅为动漫创作提供了科学依据,也为用户行为研究开辟了新的视角。
实际应用
在实际应用中,Waifu数据集被广泛用于动漫推荐系统的开发。通过分析用户对不同角色的喜好数据,推荐系统可以更精准地预测用户偏好,从而提供个性化的动漫推荐。此外,该数据集还可用于动漫市场分析,帮助制作方了解当前市场的角色设计趋势,优化角色设定以提升作品的市场竞争力。
数据集最近研究
最新研究方向
在虚拟角色与二次元文化研究领域,Waifu数据集为学者提供了丰富的素材。该数据集不仅包含了角色的基本信息,还涵盖了其创作者、所属系列及用户互动数据,为研究虚拟角色的社会文化影响提供了多维度的视角。近年来,随着虚拟现实技术的快速发展,虚拟角色在游戏、动漫及社交媒体中的影响力日益增强,Waifu数据集成为了探讨虚拟角色与用户情感连接、文化认同及性别角色构建的重要工具。此外,该数据集还被广泛应用于机器学习与自然语言处理领域,用于训练模型以识别和生成虚拟角色相关的文本与图像,推动了人工智能在二次元文化研究中的应用。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

中国空气质量数据集(2014-2020年)

数据集中的空气质量数据类型包括PM2.5, PM10, SO2, NO2, O3, CO, AQI,包含了2014-2020年全国360个城市的逐日空气质量监测数据。监测数据来自中国环境监测总站的全国城市空气质量实时发布平台,每日更新。数据集的原始文件为CSV的文本记录,通过空间化处理生产出Shape格式的空间数据。数据集包括CSV格式和Shape格式两数数据格式。

国家地球系统科学数据中心 收录

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录

MOOCs Dataset

该数据集包含了大规模开放在线课程(MOOCs)的相关数据,包括课程信息、用户行为、学习进度等。数据主要用于研究在线教育的行为模式和学习效果。

www.kaggle.com 收录

HyperGlobal-450K - 全球最大规模高光谱图像数据集

HyperGlobal-450K数据集由武汉大学联合国内外多所知名高校及研究机构共同构建,是迄今为止全球规模最大的高光谱图像数据集。该数据集包含约45万张高光谱图像,规模等价于超过2000万张不重叠的三波段图像,远超现有的同类数据集。数据集涵盖了全球范围内的高光谱遥感图像,包括来自地球观测一号(EO-1)Hyperion和高分五号(GF-5B)两种传感器的图像,光谱范围从可见光到短波及中波红外,具有从紫外到长波红外的330个光谱波段,空间分辨率为30米。每幅图像经过精心处理,去除了无效波段和水汽吸收波段,保留了具有实际应用价值的光谱信息。HyperGlobal-450K数据集不仅支持高光谱图像的基础研究,还能够用于开发和测试各种高光谱图像处理方法,比如图像分类、目标检测、异常检测、变化检测、光谱解混、图像去噪和超分辨率等任务。

github 收录