five

Vision Based Navigation Datasets|航天导航数据集|机器学习数据集

收藏
arXiv2024-09-18 更新2024-09-19 收录
航天导航
机器学习
下载链接:
http://arxiv.org/abs/2409.11383v1
下载链接
链接失效反馈
资源简介:
Vision Based Navigation Datasets是由欧洲空间局主导,空客防务与空间公司参与创建的数据集,旨在支持基于视觉的导航技术在航天领域的应用。该数据集包含多个子集,涵盖了从月球着陆到人造卫星对接等多种场景,总计超过13万条数据。数据集的创建过程结合了真实图像、实验室模拟和合成图像,确保了数据的多源性和高质量。这些数据集主要用于训练机器学习算法,特别是在姿态估计和光学流算法方面,以解决航天器导航中的精确控制问题。
提供机构:
欧洲空间局
创建时间:
2024-09-18
AI搜集汇总
数据集介绍
main_image_url
构建方式
Vision Based Navigation Datasets的构建方式融合了多种数据源,包括真实图像、实验室模拟和合成图像。首先,利用Chang’e 3着陆器的导航相机图像作为基础数据,通过PDS标准格式化,并逆向推导出估计的轨迹。其次,利用SurRender软件进行高保真图像模拟,结合多分辨率地形模型和元数据生成合成数据。此外,DLR TRON设施的实验室模拟和Airbus Robotic实验室的实验数据也被纳入,确保数据的多样性和真实性。最后,通过生成对抗网络(GAN)将低分辨率合成图像转换为高分辨率图像,进一步丰富数据集的多样性。
特点
Vision Based Navigation Datasets的特点在于其数据来源的多样性和高保真度。数据集不仅包含真实的Chang’e 3图像,还包括实验室模拟和合成图像,确保了数据的多维度覆盖。此外,通过SurRender软件生成的高保真图像模拟,结合多分辨率地形模型和元数据,使得数据集在视觉和物理特性上具有高度一致性。生成对抗网络(GAN)的应用进一步提升了图像质量,使得数据集在训练机器学习算法时具有更高的适用性和准确性。
使用方法
Vision Based Navigation Datasets的使用方法多样,适用于多种视觉导航算法的训练和验证。首先,数据集可以直接用于训练基于卷积神经网络(CNN)的姿态估计算法,通过对比预测的热图与地面真实值,评估算法的性能。其次,数据集也可用于训练密集光流算法,如RAFT,通过光学流端点误差(EPE)等指标评估算法在不同数据集上的表现。此外,数据集还可用于生成对抗网络(GAN)的训练,通过将低分辨率合成图像转换为高分辨率图像,提升图像质量和数据集的多样性。
背景与挑战
背景概述
视觉导航数据集(Vision Based Navigation Datasets)是由Airbus Defence and Space与欧洲航天局(ESA)合作开发,旨在解决基于视觉的导航(VBN)在航天应用中的关键问题。该项目始于2022年6月,持续至2023年12月,主要研究人员包括Jérémy Lebreton、Ingo Ahrns等,涵盖了Airbus Toulouse、Airbus Bremen以及DLR等机构。核心研究问题是如何生成适用于机器学习算法的训练数据集,以验证和提升VBN算法的性能。该数据集的创建不仅推动了航天领域中机器学习的应用,还为未来的空间任务提供了重要的技术支持。
当前挑战
视觉导航数据集在构建过程中面临多项挑战。首先,生成高质量的合成数据集需要精确的模拟工具和复杂的图像处理技术,如SurRender软件的使用。其次,确保合成数据与真实数据之间的准确性和一致性是一个重大难题,尤其是在处理如月球着陆和卫星对接等复杂场景时。此外,数据集的多样性和覆盖范围也是一个挑战,需要涵盖不同的光照条件、视角和动态环境。最后,如何有效地利用生成对抗网络(GAN)等先进技术来提升数据集的质量和真实感,同时保持计算效率,也是当前研究的重点。
常用场景
经典使用场景
Vision Based Navigation Datasets(基于视觉的导航数据集)在航天领域中被广泛用于训练机器学习算法,特别是在视觉导航和控制(GNC)方面。该数据集的经典使用场景包括两个主要案例:一是卫星在轨对接,使用ENVISAT卫星的模拟数据;二是月球着陆场景,利用嫦娥三号(Chang’e 3)的真实图像和合成数据。这些数据集通过高保真图像模拟器SurRender生成,结合了真实图像和合成图像,以确保训练数据的多样性和准确性。
衍生相关工作
Vision Based Navigation Datasets的开发和应用催生了一系列相关研究工作。例如,基于该数据集,研究者们开发了多种深度学习模型,用于姿态估计和光学流计算。此外,生成对抗网络(GAN)在该数据集上的应用,展示了如何将低分辨率合成图像转换为高分辨率真实图像,进一步提升了数据集的质量和应用范围。这些衍生工作不仅丰富了视觉导航领域的研究内容,也为未来的航天任务提供了技术储备。
数据集最近研究
最新研究方向
在视觉导航领域,基于视觉的导航数据集(Vision Based Navigation Datasets)的最新研究方向主要集中在利用合成数据和真实数据相结合的方法,以提高机器学习算法在空间应用中的性能。研究团队通过生成高保真度的合成图像和元数据,结合生成对抗网络(GANs)和模型捕捉技术,致力于解决空间导航中数据集不足的问题。这些研究不仅推动了视觉导航算法的发展,还为未来空间任务中的自主导航提供了坚实的基础。
相关研究论文
  • 1
    Training Datasets Generation for Machine Learning: Application to Vision Based Navigation欧洲空间局 · 2024年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

DFT dataset for high entropy alloys

我们的DFT数据集涵盖了由八种元素组成的bcc和fcc结构,包括所有可能的2至7元合金系统。该数据集在Zenodo上公开可用,包含初始和最终结构、形成能量、原子磁矩和电荷等属性。

github 收录

中国陆域及周边逐日1km全天候地表温度数据集(TRIMS LST;2000-2024)

地表温度(Land surface temperature, LST)是地球表面与大气之间界面的重要参量之一。它既是地表与大气能量交互作用的直接体现,又对于地气过程具有复杂的反馈作用。因此,地表温度不仅是气候变化的敏感指示因子和掌握气候变化规律的重要前提,还是众多模型的直接输入参数,在许多领域有广泛的应用,如气象气候、环境生态、水文等。伴随地学及相关领域研究的深入和精细化,学术界对卫星遥感的全天候地表温度(All-weather LST)具有迫切的需求。 本数据集的制备方法是增强型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Terra/Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性,最终重建得到较高质量的全天候地表温度数据集。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Terra/Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。当以MODIS LST为参考时,该数据集在白天和夜间的平均偏差(MBE)为0.09K和-0.03K,偏差标准差(STD)为1.45K和1.17K。基于19个站点实测数据的检验结果表明,其MBE为-2.26K至1.73K,RMSE为0.80K至3.68K,且在晴空与非晴空条件下无显著区别。 本数据集的时间分辨率为逐日4次,空间分辨率为1km,时间跨度为2000年-2024年;空间范围包括我国陆域的主要区域(包含港澳台地区,暂不包含我国南海诸岛)及周边区域(72°E-135°E,19°N-55°N)。本数据集的缩写名为TRIMS LST(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST),以便用户使用。需要说明的是,TRIMS LST的空间子集TRIMS LST-TP(中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2024)V2)同步在国家青藏高原科学数据中心发布,以减少相关用户数据下载和处理的工作量。

国家青藏高原科学数据中心 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

Checkerboard 4x4

Taken from : https://github.com/ksenia-konyushkova/LAL

kaggle 收录