five

AgiBotWorld-Alpha|机器人技术数据集|机器人操控数据集

收藏
魔搭社区2025-09-29 更新2025-01-11 收录
机器人技术
机器人操控
下载链接:
https://modelscope.cn/datasets/agibot-world/AgiBotWorld-Alpha
下载链接
链接失效反馈
资源简介:
--> # ⚠️Important Notice !!! Dear Users, The Alpha Dataset has been updated as follows: - **Frame Loss Data Removal:** Several episodes with frame loss issues have been removed. For the complete list of removed episode IDs, please refer to this [document](https://docs.google.com/spreadsheets/d/1ggKZP1KOw3geTzdu5nx8iUB9nSbJOBMVU3p4uFWDcxw/edit?gid=0#gid=0). - **Changes in Episode Count:** The updated Alpha Dataset retains the original 36 tasks. The new version has been enriched with additional interactive objects, extending the total duration from 474.12 hours to 595.31 hours. - **Data Anonymization and Compression:** The dataset has been anonymized to remove personal and sensitive information, ensuring data privacy. Additionally, the dataset has been compressed to enhance storage and transfer efficiency. - **Camera Extrinsic Parameters Correction:** The accuracy of the extrinsic parameters for some data has been corrected, improving the accuracy and consistency of camera data fusion across multiple perspectives. We recommend that you use the new version in your projects. Thank you for your support and attention. # Key Features 🔑 - **100,000+** trajectories from 100 robots, with a total duration of 300 hours. - **100+ real-world scenarios** across 5 target domains. - **Cutting-edge hardware:** visual tactile sensors / 6-DoF dexterous hand / mobile dual-arm robots - **Tasks involving:** - Contact-rich manipulation - Long-horizon planning - Multi-robot collaboration Your browser does not support the video tag. Your browser does not support the video tag. Your browser does not support the video tag. # News 🌍 - **`[2025/3/1]** AgiBot World Beta released. - **`[2025/1/20]`** AgiBot World Alpha released on OpenDataLab. [Download Link](https://opendatalab.com/OpenDataLab/AgiBot-World) - **`[2025/1/3]`** AgiBot World Alpha [**sample dataset**](sample_dataset.tar) released. - **`[2024/12/30]`** AgiBot World Alpha released. # TODO List 📅 - [x] **AgiBot World Beta**: ~1,000,000 trajectories of high-quality robot data (expected release date: Q1 2025) - [x] Complete language annotation of Alpha version (expected release data: Mid-January 2025) - [ ] **AgiBot World Colosseum**:Comprehensive platform (expected release date: 2025) - [ ] **2025 AgiBot World Challenge** (expected release date: 2025) # Table of Contents - [Key Features 🔑](#key-features-) - [News 🌍](#news-) - [TODO List 📅](#todo-list-) - [Get started 🔥](#get-started-) - [Download the Dataset](#download-the-dataset) - [Dataset Structure](#dataset-structure) - [Explanation of Proprioceptive State](#explanation-of-proprioceptive-state) - [Dataset Preprocessing](#dataset-preprocessing) - [License and Citation](#license-and-citation) # Get started 🔥 ## Download the Dataset To download the full dataset, you can use the following code. If you encounter any issues, please refer to the official Hugging Face documentation. ``` # Make sure you have git-lfs installed (https://git-lfs.com) git lfs install # When prompted for a password, use an access token with write permissions. # Generate one from your settings: https://huggingface.co/settings/tokens git clone https://huggingface.co/datasets/agibot-world/AgiBotWorld-Alpha # If you want to clone without large files - just their pointers GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/agibot-world/AgiBotWorld-Alpha ``` If you only want to download a specific task, such as `task_327`, you can use the following code. ``` # Make sure you have git-lfs installed (https://git-lfs.com) git lfs install # Initialize an empty Git repository git init AgiBotWorld-Alpha cd AgiBotWorld-Alpha # Set the remote repository git remote add origin https://huggingface.co/datasets/agibot-world/AgiBotWorld-Alpha # Enable sparse-checkout git sparse-checkout init # Specify the folders and files git sparse-checkout set observations/327 task_info/task_327.json scripts proprio_stats parameters # Pull the data git pull origin main ``` To facilitate the inspection of the dataset's internal structure and examples, we also provide a sample dataset, which is approximately 7 GB. Please refer to `sample_dataset.tar`. ## Dataset Preprocessing Our project relies solely on the [lerobot library](https://github.com/huggingface/lerobot) (dataset `v2.0`), please follow their [installation instructions](https://github.com/huggingface/lerobot?tab=readme-ov-file#installation). Here, we provide scripts for converting it to the lerobot format. **Note** that you need to replace `/path/to/agibotworld/alpha` and `/path/to/save/lerobot` with the actual path. ``` python scripts/convert_to_lerobot.py --src_path /path/to/agibotworld/alpha --task_id 352 --tgt_path /path/to/save/lerobot ``` We would like to express our gratitude to the developers of lerobot for their outstanding contributions to the open-source community. ## Dataset Structure ### Folder hierarchy ``` data ├── task_info │ ├── task_327.json │ ├── task_352.json │ └── ... ├── observations │ ├── 327 # This represents the task id. │ │ ├── 648642 # This represents the episode id. │ │ │ ├── depth # This is a folder containing depth information saved in PNG format. │ │ │ ├── videos # This is a folder containing videos from all camera perspectives. │ │ ├── 648649 │ │ │ └── ... │ │ └── ... │ ├── 352 │ │ ├── 648544 │ │ │ ├── depth │ │ │ ├── videos │ │ ├── 648564 │ │ │ └── ... │ └── ... ├── parameters │ ├── 327 │ │ ├── 648642 │ │ │ ├── camera │ │ ├── 648649 │ │ │ └── camera │ │ └── ... │ └── 352 │ ├── 648544 │ │ ├── camera # This contains all the cameras' intrinsic and extrinsic parameters. │ └── 648564 │ │ └── camera | └── ... ├── proprio_stats │ ├── 327[task_id] │ │ ├── 648642[episode_id] │ │ │ ├── proprio_stats.h5 # This file contains all the robot's proprioceptive information. │ │ ├── 648649 │ │ │ └── proprio_stats.h5 │ │ └── ... │ ├── 352[task_id] │ │ ├── 648544[episode_id] │ │ │ ├── proprio_stats.h5 │ │ └── 648564 │ │ └── proprio_stats.h5 │ └── ... ``` ### json file format In the `task_[id].json` file, we store the basic information of every episode along with the language instructions. Here, we will further explain several specific keywords. - **action_config**: The content corresponding to this key is a list composed of all **action slices** from the episode. Each action slice includes a start and end time, the corresponding atomic skill, and the language instruction. - **key_frame**: The content corresponding to this key consists of annotations for keyframes, including the start and end times of the keyframes and detailed descriptions. ``` [ {"episode_id": 649078, "task_id": 327, "task_name": "Picking items in Supermarket", "init_scene_text": "The robot is in front of the fruit shelf in the supermarket.", "lable_info":{ "action_config":[ {"start_frame": 0, "end_frame": 435, "action_text": "Pick up onion from the shelf." "skill": "Pick" }, {"start_frame": 435, "end_frame": 619, "action_text": "Place onion into the plastic bag in the shopping cart." "skill": "Place" }, ... ] }, ... ] ``` ### h5 file format In the `proprio_stats.h5` file, we store all the robot's proprioceptive data. For more detailed information, please refer to the [explanation of proprioceptive state](#explanation-of-proprioceptive-state). ``` |-- timestamp |-- state |-- effector |-- force |-- position |-- end |-- angular |-- orientation |-- position |-- velocity |-- wrench |-- head |-- effort |-- position |-- velocity |-- joint |-- current_value |-- effort |-- position |-- velocity |-- robot |-- orientation |-- orientation_drift |-- position |-- position_drift |-- waist |-- effort |-- position |-- velocity |-- action |-- effector |-- force |-- index |-- position |-- end |-- orientation |-- position |-- head |-- effort |-- position |-- velocity |-- joint |-- effort |-- index |-- position |-- velocity |-- robot |-- index |-- orientation |-- position |-- velocity |-- waist |-- effort |-- position |-- velocity ``` ## Explanation of Proprioceptive State ### Terminology *The definitions and data ranges in this section may change with software and hardware version. Stay tuned.* **State and action** 1. State State refers to the monitoring information of different sensors and actuators. 2. Action Action refers to the instructions sent to the hardware abstraction layer, where controller would respond to these instructions. Therefore, there is a difference between the issued instructions and the actual executed state. **Actuators** 1. ***Effector:*** refers to the end effector, for example dexterous hands or grippers. 2. ***End:*** refers to the 6DoF end pose on the robot flange. 3. ***Head:*** refers to the robot's head perspective,which has two degrees of freedom (pitch and yaw). 4. ***Joint:*** refers to the joints of the robot's dual arms, with 14 degrees of freedom (7 DoF each). 5. ***Robot:*** refers to the robot's pose in its surrouding environment. The orientation and position refer to the robot's relative pose in the odometry coordinate system, where the origin is set since the robot is powered on. 6. ***Waist:*** refers to the joints of the robot's waist, which has two degrees of freedom (pitch and lift). ### Common fields 1. Position: Spatial position, encoder position, angle, etc. 2. Velocity: Speed 3. Angular: Angular velocity 4. Effort: Torque of the motor. Not available for now. 5. Wrench: Six-dimensional force, force in the xyz directions, and torque. Not available for now. ### Value shapes and ranges | Group | Shape | Meaning | | --- | :---- | :---- | | /timestamp | [N] | timestamp in nanoseconds | | /state/effector/position (gripper) | [N, 2] | left `[:, 0]`, right `[:, 1]`, gripper open range in mm | | /state/effector/position (dexhand) | [N, 12] | left `[:, :6]`, right `[:, 6:]`, joint angle in rad | | /state/end/orientation | [N, 2, 4] | left `[:, 0, :]`, right `[:, 1, :]`, flange quaternion with xyzw | | /state/end/position | [N, 2, 3] | left `[:, 0, :]`, right `[:, 1, :]`, flange xyz in meters | | /state/head/position | [N, 2] | yaw `[:, 0]`, pitch `[:, 1]`, rad | | /state/joint/current_value | [N, 14] | left arm `[:, :7]`, right arm `[:, 7:]` | | /state/joint/position | [N, 14] | left arm `[:, :7]`, right arm `[:, 7:]`, rad | | /state/robot/orientation | [N, 4] | quaternion in xyzw, yaw only | | /state/robot/position | [N, 3] | xyz position, where z is always 0 in meters | | /state/waist/position | [N, 2] | pitch `[:, 0]` in rad, lift `[:, 1]`in meters | | /action/*/index | [M] | actions indexes refer to when the control source is actually sending signals | | /action/effector/position (gripper) | [N, 2] | left `[:, 0]`, right `[:, 1]`, 0 for full open and 1 for full close | | /action/effector/position (dexhand) | [N, 12] | same as /state/effector/position | /action/effector/index | [M_1] | index when the control source for end effector is sending control signals | | /action/end/orientation | [N, 2, 4] | same as /state/end/orientation | | /action/end/position | [N, 2, 3] | same as /state/end/position | | /action/end/index | [M_2] | same as other indexes | | /action/head/position | [N, 2] | same as /state/head/position | | /action/head/index | [M_3] | same as other indexes | | /action/joint/position | [N, 14] | same as /state/joint/position | | /action/joint/index | [M_4] | same as other indexes | | /action/robot/velocity | [N, 2] | vel along x axis `[:, 0]`, yaw rate `[:, 1]` | | /action/robot/index | [M_5] | same as other indexes | | /action/waist/position | [N, 2] | same as /state/waist/position | | /action/waist/index | [M_6] | same as other indexes | # License and Citation All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). Please consider citing our project if it helps your research. ```BibTeX @misc{contributors2024agibotworldrepo, title={AgiBot World Colosseum}, author={AgiBot World Colosseum contributors}, howpublished={\url{https://github.com/OpenDriveLab/AgiBot-World}}, year={2024} } ```
提供机构:
maas
创建时间:
2024-12-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

RDD2022

RDD2022是一个多国图像数据集,用于自动道路损伤检测,由印度理工学院罗凯里分校交通系统中心等机构创建。该数据集包含来自六个国家的47,420张道路图像,标注了超过55,000个道路损伤实例。数据集通过智能手机和高分辨率相机等设备采集,旨在通过深度学习方法自动检测和分类道路损伤。RDD2022数据集的应用领域包括道路状况的自动监测和计算机视觉算法的性能基准测试,特别关注于解决多国道路损伤检测的问题。

arXiv 收录

Crop Yield Prediction Dataset

Impact of Environmental Factors on Crop Yields Across Countries

kaggle 收录

era5

ERA5数据集是基于Hersbach等人的研究,包含26个气候变量,数据采样间隔为每6小时一次,覆盖了整个月份的每天,适用于气候研究。

huggingface 收录