liuhyuu/NetEaseCrowd|众包数据集|数据标注数据集
收藏🧑🤝🧑 NetEaseCrowd: A Dataset for Long-term and Online Crowdsourcing Truth Inference
Introduction
NetEaseCrowd is a large-scale crowdsourcing annotation dataset based on a mature Chinese data crowdsourcing platform of NetEase Inc. It contains about 2,400 workers, 1,000,000 tasks, and 6,000,000 annotations collected over approximately 6 months. The dataset provides ground truths for all tasks and records timestamps for all annotations.
Task
The dataset is built based on a gesture comparison task. Each task contains three choices, where two are similar gestures and the other one is different. Annotators are required to pick out the different one.
Comparison with Existing Datasets
Compared to existing crowdsourcing datasets, NetEaseCrowd has the following characteristics:
Characteristic | Existing Datasets | NetEaseCrowd Dataset |
---|---|---|
Scalability | Small sizes | Large-scale with 6 million annotations |
Timestamps | No timestamps | Complete timestamps over a 6-month period |
Task Type | Single type | Various task types with different capabilities |
Dataset Statistics
The basic statistics of NetEaseCrowd and other datasets are as follows:
Dataset | #Worker | #Task | #Groundtruth | #Anno | Avg(#Anno/worker) | Avg(#Anno/task) | Timestamp | Task type |
---|---|---|---|---|---|---|---|---|
NetEaseCrowd | 2,413 | 999,799 | 999,799 | 6,016,319 | 2,493.3 | 6.0 | ✔︎ | Multiple |
Adult | 825 | 11,040 | 333 | 92,721 | 112.4 | 8.4 | ✘ | Single |
Birds | 39 | 108 | 108 | 4,212 | 108.0 | 39.0 | ✘ | Single |
Dog | 109 | 807 | 807 | 8,070 | 74.0 | 10.0 | ✘ | Single |
CF | 461 | 300 | 300 | 1,720 | 3.7 | 5.7 | ✘ | Single |
CF_amt | 110 | 300 | 300 | 6030 | 54.8 | 20.1 | ✘ | Single |
Emotion | 38 | 700 | 565 | 7,000 | 184.2 | 10.0 | ✘ | Single |
Smile | 64 | 2,134 | 159 | 30,319 | 473.7 | 14.2 | ✘ | Single |
Face | 27 | 584 | 584 | 5,242 | 194.1 | 9.0 | ✘ | Single |
Fact | 57 | 42,624 | 576 | 216,725 | 3802.2 | 5.1 | ✘ | Single |
MS | 44 | 700 | 700 | 2,945 | 66.9 | 4.2 | ✘ | Single |
Product | 176 | 8,315 | 8,315 | 24,945 | 141.7 | 3.0 | ✘ | Single |
RTE | 164 | 800 | 800 | 8,000 | 48.8 | 10.0 | ✘ | Single |
Sentiment | 1,960 | 98,980 | 1,000 | 569,375 | 290.5 | 5.8 | ✘ | Single |
SP | 203 | 4,999 | 4,999 | 27,746 | 136.7 | 5.6 | ✘ | Single |
SP_amt | 143 | 500 | 500 | 10,000 | 69.9 | 20.0 | ✘ | Single |
Trec | 762 | 19,033 | 2,275 | 88,385 | 116.0 | 4.6 | ✘ | Single |
Tweet | 85 | 1,000 | 1,000 | 20,000 | 235.3 | 20.0 | ✘ | Single |
Web | 177 | 2,665 | 2,653 | 15,567 | 87.9 | 5.8 | ✘ | Single |
ZenCrowd_us | 74 | 2,040 | 2,040 | 12,190 | 164.7 | 6.0 | ✘ | Single |
ZenCrowd_in | 25 | 2,040 | 2,040 | 11,205 | 448.2 | 5.5 | ✘ | Single |
ZenCrowd_all | 78 | 2,040 | 2,040 | 21,855 | 280.2 | 10.7 | ✘ | Single |
Data Content and Format
Obtain the Data
The dataset can be accessed in two ways:
- Directly download from Hugging Face.
- Download partitions from the GitHub repository and concatenate them.
Dataset Format
Each record in the dataset represents an interaction between a worker and a task, with the following columns:
- taskId: Unique id of the annotated task.
- tasksetId: Unique id of the task set.
- workerId: Unique id of the worker.
- answer: Annotation given by the worker.
- completeTime: Timestamp of annotation completion.
- truth: Ground truth of the annotated task.
- capability: Id of the capability required by the task set.
Data Sample
tasksetId | taskId | workerId | answer | completeTime | truth | capability |
---|---|---|---|---|---|---|
6980 | 1012658482844795232 | 64 | 2 | 1661917345953 | 1 | 69 |
6980 | 1012658482844795232 | 150 | 1 | 1661871234755 | 1 | 69 |
6980 | 1012658482844795232 | 263 | 0 | 1661855450281 | 1 | 69 |
Baseline Models
Several truth inference methods have been tested on the dataset, with results as follows:
Method | Accuracy | F1-score |
---|---|---|
MV | 0.92695 | 0.92692 |
DS | 0.95178 | 0.94817 |
MACE | 0.95991 | 0.94957 |
Wawa | 0.94814 | 0.94445 |
ZeroBasedSkill | 0.94898 | 0.94585 |
GLAD | 0.95064 | 0.95058 |
EBCC | 0.91071 | 0.90996 |
ZC | 0.95305 | 0.95301 |
TiReMGE | 0.92713 | 0.92706 |
LAA | 0.94173 | 0.94169 |
BiLA | 0.88036 | 0.87896 |
License
The NetEaseCrowd dataset is licensed under CC-BY-SA-4.0.
China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录
OpenSonarDatasets
OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。
github 收录
中国高分辨率高质量PM2.5数据集(2000-2023)
ChinaHighPM2.5数据集是中国高分辨率高质量近地表空气污染物数据集(ChinaHighAirPollutants, CHAP)中PM2.5数据集。该数据集利用人工智能技术,使用模式资料填补了卫星MODIS MAIAC AOD产品的空间缺失值,结合地基观测、大气再分析和排放清单等大数据生产得到2000年至今全国无缝隙地面PM2.5数据。数据十折交叉验证决定系数R2为0.92,均方根误差RMSE为10.76 µg/m3。主要范围为整个中国地区,空间分辨率为1 km,时间分辨率为日、月、年,单位为µg/m3。注意:该数据集持续更新,如需要更多数据,请发邮件联系作者(weijing_rs@163.com; weijing@umd.edu)。 数据文件中包含NC转GeoTiff的四种代码(Python、Matlab、IDL和R语言)nc2geotiff codes。
国家青藏高原科学数据中心 收录
WorldClim
WorldClim是一个全球气候数据集,提供了全球范围内的气候数据,包括温度、降水、生物气候变量等。数据集的分辨率从30秒到10分钟不等,适用于各种尺度的气候分析和建模。
www.worldclim.org 收录
Beijing Traffic
The Beijing Traffic Dataset collects traffic speeds at 5-minute granularity for 3126 roadway segments in Beijing between 2022/05/12 and 2022/07/25.
Papers with Code 收录