five

Global Entrepreneurship Monitor (GEM)|创业数据集|全球经济数据集

收藏
www.gemconsortium.org2024-10-26 收录
创业
全球经济
下载链接:
https://www.gemconsortium.org/
下载链接
链接失效反馈
资源简介:
Global Entrepreneurship Monitor (GEM) 数据集包含了全球多个国家和地区的创业活动数据,涵盖创业环境、创业活动、创业动机、创业支持和创业绩效等多个维度。数据通过问卷调查和统计分析收集,旨在提供全球创业生态系统的全面视图。
提供机构:
www.gemconsortium.org
AI搜集汇总
数据集介绍
main_image_url
构建方式
Global Entrepreneurship Monitor (GEM) 数据集的构建基于全球范围内的广泛调研,涵盖了超过100个国家和地区。该数据集通过多层次的问卷调查,收集了关于创业活动、创业环境、创业动机和创业绩效等方面的详细数据。调研方法包括对企业家、潜在企业家以及一般公众的深度访谈和问卷调查,确保数据的全面性和代表性。此外,GEM还采用了定量分析和定性分析相结合的方法,以确保数据的高质量和可靠性。
特点
GEM 数据集以其全球覆盖范围和多维度数据著称,提供了关于全球创业生态系统的详尽视角。该数据集不仅包括创业活动的数量和质量指标,还深入分析了创业者的社会经济背景、创业动机和创业环境的影响因素。此外,GEM数据集还定期更新,确保了数据的时效性和连续性,为研究者和政策制定者提供了宝贵的参考资料。
使用方法
GEM 数据集适用于多种研究目的,包括但不限于创业行为分析、创业政策评估和创业教育研究。研究者可以通过GEM数据集进行跨国比较研究,分析不同国家和地区的创业活动差异及其背后的驱动因素。政策制定者可以利用该数据集评估现有创业政策的有效性,并制定更具针对性的政策措施。此外,教育机构也可以利用GEM数据集开发创业教育课程,帮助学生了解全球创业趋势和最佳实践。
背景与挑战
背景概述
全球创业观察(Global Entrepreneurship Monitor, GEM)数据集自1999年由伦敦商学院和美国巴布森学院联合发起,旨在系统性地评估和分析全球范围内的创业活动。该数据集汇集了来自超过100个国家和地区的创业相关数据,涵盖创业动机、创业环境、创业成功率等多个维度。GEM的核心研究问题包括创业活动的驱动因素、创业对经济增长的影响以及创业生态系统的构建。其影响力不仅限于学术界,还广泛应用于政策制定和商业咨询领域,为全球创业研究提供了宝贵的数据支持。
当前挑战
尽管GEM数据集在全球创业研究中占据重要地位,但其构建和应用过程中仍面临诸多挑战。首先,数据收集的复杂性在于需要跨越不同文化、经济和社会背景的国家和地区,确保数据的代表性和一致性。其次,数据更新频率和质量控制是另一大挑战,尤其是在快速变化的全球经济环境中,确保数据的时效性和准确性至关重要。此外,如何有效整合和分析海量数据,以揭示创业活动的深层次规律,也是当前研究面临的重要课题。
发展历史
创建时间与更新
Global Entrepreneurship Monitor (GEM) 数据集创建于1999年,由伦敦商学院和美国巴布森学院共同发起。自创建以来,GEM每年都会进行更新,以反映全球创业活动的最新趋势和动态。
重要里程碑
GEM数据集的重要里程碑包括2001年首次发布全球创业观察报告,该报告系统性地分析了全球创业活动的现状和趋势,为政策制定者和学术研究者提供了宝贵的数据支持。2005年,GEM扩展了其研究范围,涵盖了更多的国家和地区,进一步提升了其全球影响力。2010年,GEM引入了新的指标和方法论,以更精确地衡量创业活动的质量和影响,这一改进显著提升了数据集的科学性和实用性。
当前发展情况
当前,GEM数据集已成为全球创业研究领域的重要参考资源,其数据被广泛应用于学术研究、政策制定和商业分析中。GEM不仅提供了丰富的定量数据,还通过深入的案例研究和专家访谈,为理解创业生态系统提供了多维度的视角。此外,GEM还积极推动国际合作,与多个国家和地区的研究机构建立了长期合作关系,共同推动全球创业研究的发展。GEM的持续更新和扩展,使其在创业研究领域的影响力不断增强,为全球创业环境的优化和创新驱动型经济的发展提供了有力支持。
发展历程
  • Global Entrepreneurship Monitor (GEM) 首次发表,由伦敦商学院和美国巴布森学院联合发起,旨在全球范围内研究创业活动。
    1997年
  • GEM 首次应用,发布了第一份全球创业观察报告,涵盖了10个国家的创业活动数据。
    1999年
  • GEM 扩展至覆盖37个国家和地区,成为全球最大的创业研究项目之一。
    2001年
  • GEM 发布了首个全球创业环境指数,评估各国创业环境的优劣。
    2005年
  • GEM 研究范围扩展至100多个国家和地区,成为全球创业研究的重要参考。
    2010年
  • GEM 引入了新的研究方法和指标,以更全面地评估全球创业生态系统。
    2015年
  • GEM 发布了关于新冠疫情对全球创业活动影响的特别报告,展示了疫情对创业生态系统的深远影响。
    2020年
常用场景
经典使用场景
在全球创业领域,Global Entrepreneurship Monitor (GEM) 数据集被广泛用于分析和评估不同国家和地区的创业活动水平。该数据集通过收集大量的定量和定性数据,涵盖了创业者的动机、行为、资源需求以及创业环境等多个维度。研究者利用GEM数据集,可以深入探讨创业活动的驱动因素,如经济政策、教育背景和社会文化等,从而为政策制定者和学术界提供有力的数据支持。
实际应用
在实际应用中,GEM数据集为政策制定者提供了宝贵的参考信息,帮助他们制定和优化创业支持政策。例如,通过分析GEM数据,政府可以识别出创业生态系统中的薄弱环节,并采取相应的措施来改善创业环境。此外,企业和投资者也可以利用GEM数据集来评估市场潜力和风险,从而做出更为明智的投资决策。GEM数据集的应用不仅提升了创业活动的质量和效率,还促进了全球经济的可持续发展。
衍生相关工作
基于GEM数据集,许多经典的研究工作得以展开,推动了创业研究领域的深入发展。例如,有学者利用GEM数据集研究了创业教育对创业成功的影响,发现系统的创业教育能够显著提高创业者的成功率。此外,GEM数据集还激发了大量关于创业融资和政府支持的研究,揭示了不同融资渠道和政策支持对创业活动的影响机制。这些研究不仅丰富了创业理论,还为实践提供了有力的理论支持。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

VoxBox

VoxBox是一个大规模语音语料库,由多样化的开源数据集构建而成,用于训练文本到语音(TTS)系统。

github 收录

中亚主要国家的原油资源的储量、产量、消费量及其占世界比重(1985-2016)

中亚五国中,石油资源主要分布在哈萨克斯坦、乌兹别克斯坦、土库曼斯坦三个国家。根据BP世界能源统计年鉴,经整理、抽取、计算和汇总后,形成中亚主要国家(哈萨克斯坦、乌兹别克斯坦、土库曼斯坦)原油资源的储量、产量、消费量及其占世界比重的统计表。 主要指标包括: (1)储量,1991-2016年,单位:百万吨 (2)产量,1985-2016年,单位:百万吨 (3)储产比,1991-2016年,单位:百万吨 (4)消费量,1985-2016年,单位:百万吨 (5)产消差额,1985-2016年,单位:百万吨 此外,以上数据均包括中亚地区的哈萨克斯坦、乌兹别克斯坦、土库曼斯坦、三国汇总以及世界总量的情况。

地球大数据科学工程 收录

Tropicos

Tropicos是一个全球植物名称数据库,包含超过130万种植物的名称、分类信息、分布数据、图像和参考文献。该数据库由密苏里植物园维护,旨在为植物学家、生态学家和相关领域的研究人员提供全面的植物信息。

www.tropicos.org 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

Beijing Traffic

The Beijing Traffic Dataset collects traffic speeds at 5-minute granularity for 3126 roadway segments in Beijing between 2022/05/12 and 2022/07/25.

Papers with Code 收录