five

First arrival tomography-derived velocity models for Oneida Lake, New York

收藏
DataCite Commons2024-08-16 更新2025-04-16 收录
下载链接:
https://www.marine-geo.org/doi/10.26022/IEDA/331043
下载链接
链接失效反馈
资源简介:
The data set contains velocity models derived from first arrival seismic tomography methods applied to a seismic survey collected for reflection seismic purposes. The original data set was collected as a reflection seismic survey and therefore the data set did not contain forward and reverse shots. Additionally, unlike most seismic tomography surveys, the seismic source and the hydrophones or receivers remained at a constant distance (e.g. the source was always the same distance from channel 1 or channel 144). The source and streamer (array of receivers) were towed behind the vessel and the source or air guns were fired every 6.25 meters. Shot gathers in SEG-Y format were imported into the Geogiga DW TOMO software in 10 shot increments with spacings of ~62.5 meters. This provided a spatially-dense data set for every line, with overlapping ray paths. This software uses ray tracing or the shortest path method in the forward modeling process (Moser, 1991). The forward model or initial velocity model is a sub-surface velocity model defined by the user. The intent of the tomography-derived velocity models was to independently confirm results from seismic reflection data, as well as provide information on the depth to basement in areas where reflection data failed to image the sub-surface stratigraphy. Therefore, a priori data from the reflection data set was limited in the tomography inversion process. The initial model contained a surface velocity of 1350 m/s and increased to 1600 m/s over a depth of 15 meters. Below 15 meters the model increased by 390 m/s every 1 meter to reach a velocity of 5500 meters at 25 meters depth. The same forward model was used for every line, and each line was subjected to 9 iterations with a maximum disturbance of 75%. The inversion process used an algorithm adapted from Toomey et al. (1994) which accounts for previous knowledge such as the prior iteration, smoothing parameters, and travel time uncertainties which are established by the user. Following careful parameter testing, the smoothing parameters chosen for use in the algorithm were 3.75 m for the vertical smoothing, 15.5 m for the horizontal smoothing, and a picking uncertainty of 1 ms. The velocity models are in ASCII text file format and each text file is named after the corresponding seismic reflection profile. In the text files, the first column is depth in meters, the second column is velocity in meters/second, the third column is UTM northing and the fourth is UTM easting (both in meters, UTM zone 18N). A total of 13 lines were processed using the first arrival tomography technique. It should be noted that data coverage or ray path density is much lower for the first few hundred meters of each line. Therefore, the beginning and end of each velocity model should be examined carefully and likely removed from the survey. The data files were generated as part of a project called P2C2: A High Resolution Paleoclimate Archive of Termination I in Oneida Lake and Glacial Lake Iroquois Sediments. Funding was provided through NSF grant EAR18-04460 to Syracuse University.
提供机构:
Interdisciplinary Earth Data Alliance (IEDA)
创建时间:
2022-07-11
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Tropicos

Tropicos是一个全球植物名称数据库,包含超过130万种植物的名称、分类信息、分布数据、图像和参考文献。该数据库由密苏里植物园维护,旨在为植物学家、生态学家和相关领域的研究人员提供全面的植物信息。

www.tropicos.org 收录

WideIRSTD Dataset

WideIRSTD数据集包含七个公开数据集:SIRST-V2、IRSTD-1K、IRDST、NUDT-SIRST、NUDT-SIRST-Sea、NUDT-MIRSDT、Anti-UAV,以及由国防科技大学团队开发的数据集,包括模拟陆基和太空基数据,以及真实手动标注的太空基数据。数据集包含具有各种目标形状(如点目标、斑点目标、扩展目标)、波长(如近红外、短波红外和热红外)、图像分辨率(如256、512、1024、3200等)的图像,以及不同的成像系统(如陆基、空基和太空基成像系统)。

github 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

World Oil Production Data

该数据集包含了全球各国的石油生产数据,涵盖了从1973年至今的年度和月度数据。数据包括各国的原油产量、天然气液体产量以及总液体产量。此外,数据集还提供了各国的石油消费量和净进口量等信息。

www.eia.gov 收录