five

PII-Scope|隐私保护数据集|安全评估数据集

收藏
arXiv2024-10-09 更新2024-10-12 收录
隐私保护
安全评估
下载链接:
http://arxiv.org/abs/2410.06704v1
下载链接
链接失效反馈
资源简介:
PII-Scope是由华为慕尼黑研究中心创建的一个综合基准数据集,旨在评估大型语言模型(LLMs)中个人身份信息(PII)提取攻击的有效性。该数据集包含了多种威胁场景下的PII提取攻击方法,通过系统分析和实验,揭示了现有单次查询攻击对PII泄露的低估现象。数据集的创建过程涉及对不同攻击方法的超参数敏感性进行深入分析,并开发了标准化的评估方法。PII-Scope的应用领域主要集中在LLMs的隐私保护和安全评估,旨在解决PII泄露问题,为开发有效的隐私保护策略提供基础。
提供机构:
华为慕尼黑研究中心
创建时间:
2024-10-09
AI搜集汇总
数据集介绍
main_image_url
构建方式
PII-Scope is meticulously crafted to evaluate the efficacy of PII extraction attacks on large language models (LLMs) across various threat scenarios. The benchmark integrates a taxonomy of PII attacks, categorizing them based on the threat model and data accessibility assumptions. It systematically analyzes the sensitivity of each attack methodology to internal hyperparameters, providing a comprehensive understanding of their effectiveness. The dataset is constructed by categorizing current PII attacks into black-box and white-box settings, considering the attacker's access to the model's parameters and pretraining data. This categorization aids in a standardized evaluation methodology, ensuring a rigorous empirical assessment of PII extraction attacks in realistic threat scenarios.
特点
PII-Scope stands out for its comprehensive and standardized evaluation methodology, which is crucial for assessing the privacy risks associated with LLMs. It uniquely addresses the variability and unstandardized comparisons across studies by providing a clear and unified understanding of PII extraction attacks. The benchmark's taxonomy of attacks, sensitivity analysis of hyperparameters, and realistic attack scenarios make it a robust tool for developing effective mitigation strategies. Additionally, PII-Scope highlights the underestimation of PII leakage in existing single-query attacks, revealing that sophisticated adversarial capabilities can significantly enhance extraction rates.
使用方法
PII-Scope is designed to be utilized by researchers and practitioners in the field of privacy and security to evaluate and mitigate PII leakage in LLMs. It provides a structured approach to assess the robustness of PII extraction attacks by systematically analyzing their sensitivity to internal hyperparameters. Researchers can use the benchmark to develop and test new mitigation strategies, while practitioners can employ it to evaluate the privacy risks of their LLMs. The dataset's taxonomy of attacks and standardized evaluation methodology ensure that assessments are consistent and comparable, facilitating a deeper understanding of the privacy risks faced by data subjects in the pretraining dataset.
背景与挑战
背景概述
PII-Scope is a comprehensive benchmark designed to evaluate state-of-the-art methodologies for Personal Identifiable Information (PII) extraction attacks targeting Large Language Models (LLMs) across diverse threat settings. Introduced by researchers from Huawei Munich Research Center, this benchmark aims to provide a deeper understanding of these attacks by uncovering crucial hyperparameters and extending the study to more realistic attack scenarios. The primary goal of PII-Scope is to establish a rigorous empirical benchmark for PII extraction attacks in realistic threat scenarios and to provide a strong foundation for developing effective mitigation strategies.
当前挑战
The primary challenge addressed by PII-Scope is the underestimation of PII leakage in existing single-query attacks. The benchmark highlights that with sophisticated adversarial capabilities and a limited query budget, PII extraction rates can increase by up to fivefold when targeting the pretrained model. Additionally, finetuned models are shown to be more vulnerable to leakage than pretrained models. The construction of PII-Scope itself presents challenges, including the need for a realistic and standardized evaluation methodology and the exploration of advanced adversarial strategies such as repeated and diverse querying, and leveraging iterative learning for continual PII extraction.
常用场景
经典使用场景
PII-Scope 数据集的经典使用场景在于评估大型语言模型(LLMs)在不同威胁设置下对个人身份信息(PII)提取攻击的防御能力。该数据集通过系统分析潜在的PII攻击,并探索使用高级对抗策略的PII攻击,揭示了现有单一查询攻击对PII泄露的低估。通过广泛的实验,PII-Scope 展示了在有限的查询预算下,PII提取率可以增加多达五倍。
实际应用
PII-Scope 数据集在实际应用中主要用于评估和提升LLMs的安全性和隐私保护能力。通过模拟真实的威胁场景,该数据集帮助研究人员和开发者识别和修复模型中的隐私漏洞,确保在实际部署中LLMs能够更好地保护用户的个人身份信息。
衍生相关工作
PII-Scope 数据集衍生了一系列相关工作,包括对PII提取攻击的深入分析、对攻击方法敏感性的研究以及对PII泄露的实际威胁评估。此外,该数据集还推动了对LLMs隐私保护机制的研究,如数据匿名化、模型微调策略等,以增强模型的隐私保护能力。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

Yahoo Finance

Dataset About finance related to stock market

kaggle 收录

中国农村教育发展报告

该数据集包含了中国农村教育发展的相关数据,涵盖了教育资源分布、教育质量、学生表现等多个方面的信息。

www.moe.gov.cn 收录

poi

本项目收集国内POI兴趣点,当前版本数据来自于openstreetmap。

github 收录

NREL Wind Integration National Dataset (WIND) Toolkit

NREL Wind Integration National Dataset (WIND) Toolkit 是一个包含美国大陆风能资源和电力系统集成数据的综合数据集。该数据集提供了高分辨率的风速、风向、风能密度、电力输出等数据,覆盖了美国大陆的多个地理区域。这些数据有助于研究人员和工程师进行风能资源评估、电力系统规划和集成研究。

www.nrel.gov 收录