XiaHan19/cmmlu|语言模型评估数据集|中文理解数据集
收藏CMMLU 数据集概述
基本信息
- 许可证: cc-by-nc-4.0
- 任务类别:
- 多项选择
- 问答
- 语言: 中文
- 标签:
- 中文
- LLM
- 评估
- 名称: CMMLU
- 数据量: 10K<n<100K
简介
CMMLU 是一个综合性的中文评估套件,专门设计用于评估大型语言模型(LLMs)在中文语言和文化背景下的高级知识和推理能力。CMMLU 涵盖了从初级到高级专业水平的 67 个主题,包括需要计算专业知识的物理和数学,以及人文和社会科学领域。许多任务由于其特定的上下文细微差别和用词,不易从其他语言翻译过来。此外,CMMLU 中的许多任务答案具有中国特定性,可能在其他地区或语言中不适用或不被认为是正确的。
数据结构
CMMLU 为每个主题提供了开发和测试数据集,每个开发集包含 5 个问题,每个测试集包含 100+ 个问题。每个问题都是多项选择题,有 4 个选项,只有一个选项是正确答案。
数据加载
可以使用 datasets
库加载数据集,示例如下:
python
from datasets import load_dataset
cmmlu = load_dataset(r"haonan-li/cmmlu", agronomy)
print(cmmlu[test][0])
也可以一次性加载所有数据: python task_list = [agronomy, anatomy, ancient_chinese, arts, astronomy, business_ethics, chinese_civil_service_exam, chinese_driving_rule, chinese_food_culture, chinese_foreign_policy, chinese_history, chinese_literature, chinese_teacher_qualification, clinical_knowledge, college_actuarial_science, college_education, college_engineering_hydrology, college_law, college_mathematics, college_medical_statistics, college_medicine, computer_science, computer_security, conceptual_physics, construction_project_management, economics, education, electrical_engineering, elementary_chinese, elementary_commonsense, elementary_information_and_technology, elementary_mathematics, ethnology, food_science, genetics, global_facts, high_school_biology, high_school_chemistry, high_school_geography, high_school_mathematics, high_school_physics, high_school_politics, human_sexuality, international_law, journalism, jurisprudence, legal_and_moral_basis, logical, machine_learning, management, marketing, marxist_theory, modern_chinese, nutrition, philosophy, professional_accounting, professional_law, professional_medicine, professional_psychology, public_relations, security_study, sociology, sports_science, traditional_chinese_medicine, virology, world_history, world_religions]
from datasets import load_dataset cmmlu = {k: load_dataset(r"haonan-li/cmmlu", k) for k in task_list}
引用
@misc{li2023cmmlu, title={CMMLU: Measuring massive multitask language understanding in Chinese}, author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and Hai Zhao and Yeyun Gong and Nan Duan and Timothy Baldwin}, year={2023}, eprint={2306.09212}, archivePrefix={arXiv}, primaryClass={cs.CL} }
许可证
CMMLU 数据集的许可证是 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License。

URPC系列数据集, S-URPC2019, UDD
URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。
github 收录
GHCN
GHCN(Global Historical Climatology Network)是一个全球历史气候网络数据集,包含了全球各地气象站记录的每日气象数据,如温度、降水、风速等。该数据集用于研究气候变化和天气模式。
www.ncei.noaa.gov 收录
Population and Housing Census of 2007 - Ethiopia
Geographic coverage --------------------------- National coverage Analysis unit --------------------------- Household Person Housing unit Universe --------------------------- The census has counted people on dejure and defacto basis. The dejure population comprises all the persons who belong to a given area at a given time by virtue of usual residence, while under defacto approach people were counted as the residents of the place where they found. In the census, a person is said to be a usual resident of a household (and hence an area) if he/she has been residing in the household continuously for at least six months before the census day or intends to reside in the household for six months or longer. Thus, visitors are not included with the usual (dejure) population. Homeless persons were enumerated in the place where they spent the night on the enumeration day. The 2007 census counted foreign nationals who were residing in the city administration. On the other hand all Ethiopians living abroad were not counted. Kind of data --------------------------- Census/enumeration data [cen] Mode of data collection --------------------------- Face-to-face [f2f] Research instrument --------------------------- Two type sof questionnaires were used to collect census data: i) Short questionnaire ii) Long questionnaire Unlike the previous censuses, the contents of the short and long questionnaires were similar both for the urban and rural areas as well as for the entire city. But the short and the long questionnaires differ by the number of variables they contained. That is, the short questionnaire was used to collect basic data on population characteristics, such as population size, sex, age, language, ethnic group, religion, orphanhood and disability. Whereas the long questionnaire includes information on marital status, education, economic activity, migration, fertility, mortality, as well as housing stocks and conditions in addition to those questions contained in a short questionnaire.
catalog.ihsn.org 收录
中国行政区划shp数据
中国行政区划数据是重要的基础地理信息数据,目前不同来源的全国行政区划数据非常多,但能够开放获取的高质量行政区域数据少之又少。基于此,锐多宝的地理空间制作一套2013-2023年可开放获取的高质量行政区划数据。该套数据以2022年国家基础地理信息数据中的县区划数据作为矢量基础,辅以高德行政区划数据、天地图行政区划数据,参考历年来民政部公布的行政区划为属性基础,具有时间跨度长、属性丰富、国界准确、更新持续等特性。 中国行政区划数据统计截止时间是2023年2月12日,包含省、市、县、国界、九段线等矢量shp数据。该数据基于2020年行政区划底图,按时间顺序依次制作了2013-2023年初的行政区划数据。截止2023年1月1日,我国共有34个省级单位,分别是4个直辖市、23个省、5个自治区和2个特别行政区。截止2023年1月1日,我国共有333个地级单位,分别是293个地级市、7个地区、30个自治州和3个盟,其中38个矢量要素未纳入统计(比如直辖市北京等、特别行政区澳门等、省直辖县定安县等)。截止2023年1月1日,我国共有2843个县级单位,分别是1301个县、394个县级市、977个市辖区、117个自治县、49个旗、3个自治旗、1个特区和1个林区,其中9个矢量要素未纳入县级类别统计范畴(比如特别行政区香港、无县级单位的地级市中山市东莞市等)。
CnOpenData 收录
LFW
人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download
AI_Studio 收录