five

crop production in India dataset|农业生产数据集|数据分析数据集

收藏
github2024-04-07 更新2024-05-31 收录
农业生产
数据分析
下载链接:
https://github.com/Aditya-kr-thakur/Data-Analysis-visualization-of-crop-production-in-India-dataset
下载链接
链接失效反馈
资源简介:
该数据集包含印度作物生产的信息,包括作物类型、生产数量、地理位置和时间周期。数据来源于印度的农业数据,并以易于使用Python加载和分析的结构化格式提供。

This dataset encompasses information on crop production in India, including crop types, production quantities, geographical locations, and time periods. The data is sourced from Indian agricultural records and is provided in a structured format that facilitates easy loading and analysis using Python.
创建时间:
2021-07-24
原始信息汇总

数据集概述

数据集名称

Data Analysis and Visualization of Crop Production in India

数据集目的

分析和可视化印度农作物生产数据,以了解农业实践的动态,揭示生产趋势、相关性和关键见解,从而为农业政策、作物规划和决策过程提供信息。

数据集内容

包含印度农作物生产信息,包括作物类型、生产量、地理位置和时间周期。

数据集特征

  • 数据探索:了解数据集结构、变量和数据分布。
  • 数据清洗:处理缺失值、异常值和不一致性。
  • 描述性统计:计算均值、中位数和标准差等统计量。
  • 数据可视化:展示时间序列上的作物生产趋势、季节模式和特定作物趋势。
  • 相关性分析:研究作物生产与降雨量、温度、土壤类型和地理位置等因素的相关性。

使用工具

  • Python:用于数据分析、预处理和可视化。
  • Pandas:用于数据操作和分析。
  • Matplotlib:用于创建静态可视化。
  • Seaborn:用于创建统计图形。
  • Jupyter Notebook:用于交互式数据分析和文档记录。

包含文件

  • crop_production_data.csv:包含作物生产数据的CSV文件。
  • Crop_Production_Analysis.ipynb:包含数据分析和可视化Python代码的Jupyter Notebook。

结论

分析农作物生产数据有助于理解农业实践、生产力和可持续性。通过使用Python进行数据分析和可视化,本项目旨在增进对印度作物生产动态的理解,并为政策制定和农业战略提供依据。

AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集聚焦于印度农作物生产情况,数据来源于印度农业部门,涵盖了作物类型、生产数量、地理位置及时间周期等多个维度。数据以结构化形式存储,便于使用Python进行加载与分析。在构建过程中,数据经过严格的清洗与预处理,包括处理缺失值、异常值及不一致性,以确保数据的准确性与可靠性。通过这一过程,数据集为后续的分析与可视化提供了坚实的基础。
特点
该数据集的特点在于其全面性与多样性,涵盖了印度不同地区的农作物生产数据,包括主要作物类型及其产量变化。数据集不仅提供了时间序列数据,还包含了与农作物生产相关的环境因素,如降雨量、温度及土壤类型等。这些多维度的数据为深入分析农作物生产趋势、季节性模式及影响因素提供了丰富的素材。此外,数据集的结构化格式使其易于与Python中的数据分析工具(如Pandas、Matplotlib等)无缝集成,便于用户进行高效的数据探索与可视化。
使用方法
该数据集的使用方法主要围绕数据探索、清洗、分析与可视化展开。用户可以通过Python加载数据集,利用Pandas进行数据预处理与统计分析,如计算均值、中位数等描述性统计量。随后,借助Matplotlib和Seaborn等工具,用户可以生成静态或动态的可视化图表,展示农作物生产趋势、季节性变化及环境因素的相关性。此外,Jupyter Notebook提供了交互式分析环境,便于用户逐步探索数据并记录分析过程。通过这些方法,用户能够深入挖掘数据中的规律与洞察,为农业政策制定与决策提供科学依据。
背景与挑战
背景概述
印度农作物生产数据集聚焦于印度农业生产的核心问题,旨在通过数据分析和可视化揭示农作物生产的趋势、模式及其影响因素。该数据集由印度农业数据源构建,涵盖了作物类型、生产数量、地理位置及时间周期等关键信息。其创建时间虽未明确提及,但基于其数据来源和分析工具的使用,可以推断其构建于近年来,随着数据科学在农业领域的广泛应用而兴起。该数据集的主要研究人员或机构虽未具体说明,但其通过Python等现代数据分析工具的应用,展现了数据驱动农业研究的趋势。该数据集对农业政策制定、作物规划及决策过程具有重要影响,为理解印度农业生产动态提供了科学依据。
当前挑战
印度农作物生产数据集在解决农业领域问题时面临多重挑战。首先,农作物生产受多种因素影响,如降雨量、温度、土壤类型和地理位置等,如何准确捕捉这些因素与作物产量之间的复杂关系是一个重要挑战。其次,数据集中可能存在缺失值、异常值和不一致性,数据清洗和预处理过程需要高度精确,以确保分析结果的可靠性。此外,数据可视化过程中,如何有效展示时间序列趋势、季节性模式及作物特异性趋势,也是数据分析师需要克服的技术难题。最后,尽管该数据集为农业研究提供了丰富的信息,但其数据来源的多样性和复杂性可能限制了数据的广泛适用性和可比性。
常用场景
经典使用场景
在农业经济学和农业科学领域,crop production in India dataset被广泛用于研究印度农业生产的时空变化。通过分析不同作物类型、产量数据以及地理分布,研究者能够揭示农业生产中的关键趋势和模式。该数据集的使用场景包括但不限于作物产量预测、农业政策评估以及气候变化对农业生产的影响研究。
解决学术问题
该数据集为学术界提供了丰富的实证基础,解决了多个关键问题。例如,通过分析作物产量与气候因素(如降雨量和温度)的相关性,研究者能够评估气候变化对农业生产的潜在影响。此外,数据集还支持对农业政策的有效性进行评估,帮助制定更科学的农业发展战略,提升农业生产的可持续性和效率。
衍生相关工作
基于crop production in India dataset,学术界和工业界衍生了许多经典工作。例如,研究者开发了基于机器学习的作物产量预测模型,利用该数据集进行训练和验证。此外,一些研究聚焦于农业生产的区域差异,提出了针对不同地区的优化种植策略。这些工作不仅推动了农业科学的发展,也为全球农业生产提供了宝贵的经验借鉴。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。 数据源为获取温州台风网(http://www.wztf121.com/)的真实观测路径数据,经过处理整合后形成文件,如使用csv文件需使用文本编辑器打开浏览,否则会出现乱码,如要使用excel查看数据,请使用xlsx的格式。

国家海洋科学数据中心 收录

glaive-function-calling-openai

该数据集包含用于训练和评估语言模型在函数调用能力上的对话示例。数据集包括一个完整的函数调用示例集合和一个精选的子集,专注于最常用的函数。数据集的结构包括一个完整的数据集和几个测试子集。每个记录都是一个JSON对象,包含对话消息、可用函数定义和实际的函数调用。数据集还包括最常用的函数分布信息,并提供了加载和评估数据集的示例代码。

huggingface 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国行政区划shp数据

   中国行政区划数据是重要的基础地理信息数据,目前不同来源的全国行政区划数据非常多,但能够开放获取的高质量行政区域数据少之又少。基于此,锐多宝的地理空间制作一套2013-2023年可开放获取的高质量行政区划数据。该套数据以2022年国家基础地理信息数据中的县区划数据作为矢量基础,辅以高德行政区划数据、天地图行政区划数据,参考历年来民政部公布的行政区划为属性基础,具有时间跨度长、属性丰富、国界准确、更新持续等特性。   中国行政区划数据统计截止时间是2023年2月12日,包含省、市、县、国界、九段线等矢量shp数据。该数据基于2020年行政区划底图,按时间顺序依次制作了2013-2023年初的行政区划数据。截止2023年1月1日,我国共有34个省级单位,分别是4个直辖市、23个省、5个自治区和2个特别行政区。截止2023年1月1日,我国共有333个地级单位,分别是293个地级市、7个地区、30个自治州和3个盟,其中38个矢量要素未纳入统计(比如直辖市北京等、特别行政区澳门等、省直辖县定安县等)。截止2023年1月1日,我国共有2843个县级单位,分别是1301个县、394个县级市、977个市辖区、117个自治县、49个旗、3个自治旗、1个特区和1个林区,其中9个矢量要素未纳入县级类别统计范畴(比如特别行政区香港、无县级单位的地级市中山市东莞市等)。

CnOpenData 收录