CIRCO|图像检索数据集|基准测试数据集
收藏CIRCO Dataset 概述
CIRCO (Composed Image Retrieval on Common Objects in context) 是一个基于 COCO 2017 无标签数据集的开放领域基准数据集,专门用于组合图像检索(CIR)。该数据集包含1020个查询,随机分为220个验证集和800个测试集,平均每个查询有4.53个真实标签。CIRCO旨在解决现有数据集中假阴性的问题,并使用mAP@K进行性能评估。
数据集下载
注释
注释文件位于 annotations 文件夹中,每个分割的JSON文件包含相应的注释列表。每个注释包括以下字段:
reference_img_id: 参考图像的IDtarget_img_id: 目标图像的IDrelative_caption: 目标图像的相对描述shared_concept: 参考和目标图像之间的共享概念gt_img_ids: 真实标签图像的ID列表id: 查询的IDsemantic_aspects: 描述查询的语义方面列表
图像
CIRCO基于COCO 2017无标签数据集的图像。用户需访问COCO网站下载图像及其相应的注释。
数据结构
下载后,数据结构应如下:
CIRCO └─── annotations | test.json | val.json └─── COCO2017_unlabeled └─── annotations | image_info_unlabeled2017.json └─── unlabeled2017 | 000000243611.jpg | 000000535009.jpg | 000000097553.jpg | ...
测试评估服务器
CIRCO测试集的真实标签不公开,而是通过评估服务器进行模型评估。服务器接受JSON格式的提交文件,其中键为查询ID,值为前50个检索到的图像列表。
引用
bibtex @misc{baldrati2023zeroshot, title={Zero-Shot Composed Image Retrieval with Textual Inversion}, author={Alberto Baldrati and Lorenzo Agnolucci and Marco Bertini and Alberto Del Bimbo}, year={2023}, eprint={2303.15247}, archivePrefix={arXiv}, primaryClass={cs.CV} }

中国区域地面气象要素驱动数据集 v2.0(1951-2024)
中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。
国家青藏高原科学数据中心 收录
URPC系列数据集, S-URPC2019, UDD
URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。
github 收录
中国区域交通网络数据集
该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。
data.stats.gov.cn 收录
Wind Turbine Data
该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。
www.kaggle.com 收录
BatteryLife
BatteryLife数据集是由香港科技大学(广州)等机构提出的一个全面电池寿命预测数据集。该数据集整合了16个数据集,包含超过90,000个样本,是迄今为止最大的电池寿命数据集。它提供了包括锂离子、锌离子和钠离子电池在内的多种类型电池,覆盖了8种格式、80种化学系统、12种操作温度和646种充放电协议,具有前所未有的多样性。该数据集既包括实验室测试数据,也包括工业测试数据,为电池寿命预测研究提供了丰富的资源。
arXiv 收录
