five

GPM IMERG Final Run|降水测量数据集|卫星数据数据集

收藏
gpm.nasa.gov2024-10-24 收录
降水测量
卫星数据
下载链接:
https://gpm.nasa.gov/data/directory
下载链接
链接失效反馈
资源简介:
GPM IMERG Final Run数据集是由NASA和JAXA合作开发的全球降水测量任务(GPM)的一部分。该数据集提供了全球范围内的降水估计,结合了多种卫星和地面观测数据,以高时空分辨率提供降水信息。数据包括每半小时的降水率、累积降水等。
提供机构:
gpm.nasa.gov
AI搜集汇总
数据集介绍
main_image_url
构建方式
GPM IMERG Final Run数据集的构建基于全球降水测量任务(GPM)的核心卫星和多个合作伙伴卫星的观测数据。通过综合利用微波、红外和雷达等多种传感器的观测结果,该数据集实现了对全球范围内降水事件的高时空分辨率监测。数据处理流程包括原始数据的校正、融合和插值,最终生成每日、每月和每年的降水产品,覆盖全球范围。
使用方法
GPM IMERG Final Run数据集可广泛应用于气象学、水文学和环境科学等领域。研究者可以通过下载该数据集的官方网站获取所需时间段的降水数据,并利用GIS软件进行空间分析。此外,该数据集还支持与其他气象和环境数据集的集成,以进行更复杂的模型构建和预测分析。用户需注意数据的使用许可和引用要求,确保合法合规地使用该数据资源。
背景与挑战
背景概述
GPM IMERG Final Run数据集,由NASA与JAXA联合开发,旨在提供全球范围内的降水估计。该数据集基于多源卫星数据融合技术,自2014年发布以来,已成为气候研究、水资源管理和灾害预警等领域的重要工具。其核心研究问题是如何在高时空分辨率下准确估计全球降水,这对于理解气候变化和极端天气事件具有深远影响。
当前挑战
GPM IMERG Final Run数据集在构建过程中面临多项挑战。首先,多源卫星数据的融合需克服不同传感器间的系统误差和时空分辨率差异。其次,全球降水估计需处理复杂的地形和气候条件,尤其是在高纬度和山区。此外,数据集的实时更新和长期稳定性也是关键问题,确保其在气候模型和灾害预警系统中的可靠应用。
发展历史
创建时间与更新
GPM IMERG Final Run数据集由NASA于2014年首次发布,旨在提供全球范围内的降水数据。该数据集自发布以来,持续进行更新,最新的数据通常在事件发生后约4个月内发布,确保数据的时效性和准确性。
重要里程碑
GPM IMERG Final Run数据集的一个重要里程碑是其在2014年的首次发布,这标志着全球降水测量任务(GPM)的一个重要进展。该数据集整合了多颗卫星的观测数据,提供了前所未有的全球降水覆盖率和精度。此外,2019年的更新引入了新的算法和数据处理技术,进一步提升了数据的质量和分辨率,使其在气候研究、灾害预警和农业监测等领域得到了广泛应用。
当前发展情况
当前,GPM IMERG Final Run数据集已成为全球降水研究的重要工具,其高时空分辨率的数据为气候模型、水资源管理和灾害预警系统提供了关键支持。该数据集的不断更新和改进,确保了其在科学研究和实际应用中的持续价值。随着技术的进步,未来GPM IMERG Final Run有望进一步提高数据的精度和覆盖范围,为全球气候变化研究和应对自然灾害提供更加坚实的数据基础。
发展历程
  • GPM IMERG Final Run数据集首次发布,作为全球降水测量任务(GPM)的一部分,旨在提供全球范围内的降水数据。
    2014年
  • GPM IMERG Final Run数据集开始被广泛应用于气象学、水文学和气候研究领域,成为全球降水数据的重要来源。
    2015年
  • GPM IMERG Final Run数据集的精度得到进一步提升,通过引入更多的卫星数据和改进算法,提高了降水估计的准确性。
    2017年
  • GPM IMERG Final Run数据集被应用于多个国际气候研究项目,为全球气候变化研究提供了重要的数据支持。
    2019年
  • GPM IMERG Final Run数据集的长期数据记录被用于分析全球降水模式的变化,为气候模型的发展提供了关键数据。
    2021年
常用场景
经典使用场景
在全球气候变化研究领域,GPM IMERG Final Run数据集以其高时空分辨率的降水数据而著称。该数据集通过综合多源卫星观测,提供了全球范围内每半小时的降水估计,为气候模型验证、极端天气事件分析以及水文循环研究提供了关键数据支持。
解决学术问题
GPM IMERG Final Run数据集解决了传统地面观测站点分布不均导致的降水数据覆盖不足问题。其全球覆盖和高频次更新特性,使得研究人员能够更准确地捕捉降水变化趋势,特别是在偏远和难以到达的地区。这对于理解全球降水模式、预测气候变化影响以及评估自然灾害风险具有重要意义。
实际应用
在实际应用中,GPM IMERG Final Run数据集被广泛用于农业灌溉管理、洪水预警系统、水资源规划以及灾害响应等领域。例如,通过实时监测降水数据,农业管理者可以优化灌溉策略,提高水资源利用效率;洪水预警系统则可以提前预测洪水风险,减少灾害损失。
数据集最近研究
最新研究方向
在气象学领域,GPM IMERG Final Run数据集的最新研究方向主要集中在高时空分辨率的降水估计及其在全球气候变化研究中的应用。该数据集通过整合多源卫星观测数据,提供了全球范围内的高精度降水信息,为气候模型验证、极端天气事件监测以及水资源管理提供了重要支持。近期研究热点包括利用机器学习算法优化降水估计精度,以及探讨降水数据在农业、生态系统和城市规划中的实际应用。这些研究不仅提升了对全球降水模式的认识,也为应对气候变化带来的挑战提供了科学依据。
相关研究论文
  • 1
    The Global Precipitation Measurement MissionNASA · 2014年
  • 2
    Early versus Final GPM IMERG: Consistency of Real-Time over Final Run Precipitation EstimatesUniversity of Maryland · 2020年
  • 3
    Evaluation of the GPM IMERG Satellite-Based Precipitation Products and the WorldClim Precipitation ClimatologyUniversity of California, Irvine · 2017年
  • 4
    A Multi-Scale Evaluation of the GPM IMERG Product over the Nile BasinUniversity of Twente · 2019年
  • 5
    Impact of GPM IMERG Data on Hydrological Modeling in the Upper Blue Nile BasinAddis Ababa University · 2021年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

TM-Senti

TM-Senti是由伦敦玛丽女王大学开发的一个大规模、远距离监督的Twitter情感数据集,包含超过1.84亿条推文,覆盖了超过七年的时间跨度。该数据集基于互联网档案馆的公开推文存档,可以完全重新构建,包括推文元数据且无缺失推文。数据集内容丰富,涵盖多种语言,主要用于情感分析和文本分类等任务。创建过程中,研究团队精心筛选了表情符号和表情,确保数据集的质量和多样性。该数据集的应用领域广泛,旨在解决社交媒体情感表达的长期变化问题,特别是在表情符号和表情使用上的趋势分析。

arXiv 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录