MPII Human Pose|人体姿态估计数据集|计算机视觉数据集
收藏
- MPII Human Pose数据集首次发表,由Andreas Andriluka等人在德国马克斯·普朗克信息学研究所创建,旨在为人体姿态估计研究提供一个全面且高质量的数据集。
- MPII Human Pose数据集首次应用于学术研究,成为人体姿态估计领域的重要基准,推动了相关算法的发展和评估。
- 随着深度学习技术的进步,MPII Human Pose数据集被广泛用于训练和测试各种基于卷积神经网络的人体姿态估计模型,显著提升了模型的性能。
- MPII Human Pose数据集的扩展版本发布,增加了更多的标注数据和多样化的场景,进一步丰富了数据集的内容和应用范围。
- MPII Human Pose数据集在多个国际计算机视觉竞赛中被用作标准测试集,验证了其在人体姿态估计领域的持续影响力和重要性。
lmarena-ai/arena-hard-auto-v0.1
--- license: apache-2.0 dataset_info: features: - name: question_id dtype: string - name: category dtype: string - name: cluster dtype: string - name: turns list: - name: content dtype: string splits: - name: train num_bytes: 251691 num_examples: 500 download_size: 154022 dataset_size: 251691 configs: - config_name: default data_files: - split: train path: data/train-* --- ## Arena-Hard-Auto **Arena-Hard-Auto-v0.1** ([See Paper](https://arxiv.org/abs/2406.11939)) is an automatic evaluation tool for instruction-tuned LLMs. It contains 500 challenging user queries sourced from Chatbot Arena. We prompt GPT-4-Turbo as judge to compare the models' responses against a baseline model (default: GPT-4-0314). Notably, Arena-Hard-Auto has the highest *correlation* and *separability* to Chatbot Arena among popular open-ended LLM benchmarks ([See Paper](https://arxiv.org/abs/2406.11939)). If you are curious to see how well your model might perform on Chatbot Arena, we recommend trying Arena-Hard-Auto. Please checkout our GitHub repo on how to evaluate models using Arena-Hard-Auto and more information about the benchmark. If you find this dataset useful, feel free to cite us! ``` @article{li2024crowdsourced, title={From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline}, author={Li, Tianle and Chiang, Wei-Lin and Frick, Evan and Dunlap, Lisa and Wu, Tianhao and Zhu, Banghua and Gonzalez, Joseph E and Stoica, Ion}, journal={arXiv preprint arXiv:2406.11939}, year={2024} } ```
hugging_face 收录
中国交通事故深度调查(CIDAS)数据集
交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、
北方大数据交易中心 收录
flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
CMNEE(Chinese Military News Event Extraction dataset)
CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。
github 收录
highD
highD数据集是由亚琛工业大学汽车工程研究所创建的,旨在为高度自动化驾驶系统的安全验证提供大规模自然车辆轨迹数据。该数据集包含从德国高速公路收集的16.5小时测量数据,涵盖110,000辆车,总行驶距离达45,000公里,记录了5600次完整的变道行为。数据集通过配备高分辨率摄像头的无人机从空中视角进行测量,确保了数据的准确性和自然性。highD数据集不仅用于安全验证和影响评估,还支持交通模拟模型、交通分析、驾驶员模型和道路用户预测模型等领域的研究,旨在解决高度自动化驾驶系统在复杂交通环境中的应用问题。
arXiv 收录