five

modulation-recognition-dataset|无线通信数据集|信号调制识别数据集

收藏
github2024-05-07 更新2024-05-31 收录
无线通信
信号调制识别
下载链接:
https://github.com/zevyu/modulation-recognition-dataset
下载链接
链接失效反馈
资源简介:
包含2ASK、2PSK、2FSK、4ASK、4PSK、4FSK、8ASK、8PSK、8FSK、16QAM、64QAM等多种调制信号,信号比范围从-20db到18dB,调制到中频。信号参数包括符号率、载波频率和采样频率,以及信号通道类型。

本数据集涵盖了2ASK、2PSK、2FSK、4ASK、4PSK、4FSK、8ASK、8PSK、8FSK、16QAM、64QAM等多种调制信号,其信号比范围宽广,介于-20dB至18dB之间,并调制至中频。其中,信号参数详尽,包括符号率、载波频率、采样频率以及信号通道类型。
创建时间:
2019-01-02
原始信息汇总

数据集概述

数据集名称

modulation-recognition-dataset

数据集生成目的

用于生成调制信号数据集。

信号类型

  • 2ASK
  • 2PSK
  • 2FSK
  • 4ASK
  • 4PSK
  • 4FSK
  • 8ASK
  • 8PSK
  • 8FSK
  • 16QAM
  • 64QAM

信号参数

  • 符号率 (fb): 1 kHz
  • 载波频率 (fc): 2 kHz
  • 采样频率 (fs): 64 kHz

信号通道

  • AWGN
  • Rayleigh

信号比范围

-20 dB 至 18 dB

AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集通过生成多种调制信号来构建,涵盖了2ASK、2PSK、2FSK、4ASK、4PSK、4FSK、8ASK、8PSK、8FSK、16QAM和64QAM等多种调制方式。信号的信噪比范围从-20dB到18dB,且调制至中频。信号参数包括符号率fb为1e3,载波频率fc为2e3,采样频率fs为64e3。信号通道环境包括加性高斯白噪声(AWGN)和瑞利衰落(Rayleigh),以模拟不同的通信环境。
使用方法
该数据集适用于调制识别算法的研究与开发,用户可以通过加载数据集中的信号样本,进行特征提取、分类器训练和性能评估。数据集的多样性和复杂性使得研究者能够在不同信噪比和通道条件下测试和优化其算法,从而提高调制识别的准确性和鲁棒性。
背景与挑战
背景概述
调制识别数据集(modulation-recognition-dataset)是由研究人员创建的,旨在解决无线通信领域中的调制识别问题。该数据集包含了多种调制信号,如2ASK、2PSK、2FSK、4ASK、4PSK、4FSK、8ASK、8PSK、8FSK、16QAM和64QAM,信号强度范围从-20dB到18dB,并模拟了不同的信道条件,如加性高斯白噪声(AWGN)和瑞利衰落信道。该数据集的创建时间为近期,主要研究人员或机构未明确提及,但其核心研究问题在于通过提供多样化的调制信号和信道条件,推动调制识别算法的发展,从而提升无线通信系统的性能和可靠性。
当前挑战
调制识别数据集在构建和应用过程中面临多项挑战。首先,数据集需要涵盖广泛的调制类型和信号强度范围,以确保算法的鲁棒性和泛化能力。其次,模拟真实的信道条件,如AWGN和瑞利衰落,增加了数据集的复杂性和真实性,但也对算法的适应性和准确性提出了更高的要求。此外,如何在有限的计算资源下高效地处理和分析这些高维信号数据,也是研究人员需要克服的技术难题。这些挑战不仅推动了调制识别技术的进步,也为无线通信领域的研究提供了宝贵的实验平台。
常用场景
经典使用场景
在通信领域,调制识别数据集(modulation-recognition-dataset)被广泛应用于无线通信信号的自动识别与分类任务。该数据集包含了多种调制方式的信号,如2ASK、2PSK、2FSK等,涵盖了从-20dB到18dB的信噪比范围。通过分析这些信号的特征,研究人员可以开发和验证调制识别算法,从而实现对不同调制方式的自动分类。这一经典场景在无线通信系统的设计与优化中具有重要意义,尤其是在复杂电磁环境下,能够有效提升信号识别的准确性和鲁棒性。
解决学术问题
该数据集解决了通信领域中调制信号自动识别的核心问题,特别是在复杂信道条件下(如AWGN和Rayleigh信道)的信号分类。通过提供多样化的调制信号和信噪比范围,该数据集为研究人员提供了一个标准化的测试平台,用于评估和比较不同调制识别算法的性能。这不仅推动了调制识别技术的发展,还为无线通信系统的智能化和自适应性提供了理论支持,具有重要的学术价值和实际意义。
实际应用
在实际应用中,调制识别数据集可用于无线通信设备的信号检测与分类,如在军事通信、卫星通信和物联网设备中。通过训练和测试调制识别模型,系统能够在复杂的电磁环境中自动识别和分类不同类型的信号,从而提高通信的可靠性和效率。此外,该数据集还可应用于频谱监测和频谱管理,帮助识别和防止无线电干扰,确保频谱资源的有效利用。
数据集最近研究
最新研究方向
在无线通信领域,调制识别技术一直是研究的热点之一。modulation-recognition-dataset数据集的推出,为研究者提供了一个丰富的信号调制类型和信噪比范围的实验平台,涵盖了从简单的二进制调制到复杂的正交幅度调制等多种类型。该数据集的信号参数,如符号率、载波频率和采样频率的设定,使得研究者能够深入探讨在不同信道条件下的调制识别算法性能。特别是在高斯白噪声和瑞利衰落信道下的表现,为当前前沿的机器学习和深度学习算法在调制识别中的应用提供了宝贵的实验数据。这些研究不仅推动了通信信号处理技术的发展,也为未来5G及更高版本的无线通信系统中的自动调制识别技术奠定了基础。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

开源PHM数据集

本文分享了一个全球各大学、研究机构和公司捐赠的PHM(Prognostics and Health Management)开源数据集,涵盖加工制造、轨道交通、能源电力和半导体等行业的多种场景,包含部件级、设备级和产线级数据。用户可以利用这些数据开发智能分析和建模算法,数据集分类包括故障诊断、健康评估和寿命预测。

github 收录

全国 1∶200 000 数字地质图(公开版)空间数据库

As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.

DataCite Commons 收录

WideIRSTD Dataset

WideIRSTD数据集包含七个公开数据集:SIRST-V2、IRSTD-1K、IRDST、NUDT-SIRST、NUDT-SIRST-Sea、NUDT-MIRSDT、Anti-UAV,以及由国防科技大学团队开发的数据集,包括模拟陆基和太空基数据,以及真实手动标注的太空基数据。数据集包含具有各种目标形状(如点目标、斑点目标、扩展目标)、波长(如近红外、短波红外和热红外)、图像分辨率(如256、512、1024、3200等)的图像,以及不同的成像系统(如陆基、空基和太空基成像系统)。

github 收录

highD

highD数据集是由亚琛工业大学汽车工程研究所创建的,旨在为高度自动化驾驶系统的安全验证提供大规模自然车辆轨迹数据。该数据集包含从德国高速公路收集的16.5小时测量数据,涵盖110,000辆车,总行驶距离达45,000公里,记录了5600次完整的变道行为。数据集通过配备高分辨率摄像头的无人机从空中视角进行测量,确保了数据的准确性和自然性。highD数据集不仅用于安全验证和影响评估,还支持交通模拟模型、交通分析、驾驶员模型和道路用户预测模型等领域的研究,旨在解决高度自动化驾驶系统在复杂交通环境中的应用问题。

arXiv 收录

SHHS Sleep Heart Health Study Dataset

SHHS(Sleep Heart Health Study)数据集是一个大型多中心研究项目,旨在研究睡眠障碍与心血管疾病之间的关系。数据集包括了参与者的睡眠记录、心血管健康指标、生活习惯、遗传信息等多方面的数据。

sleepdata.org 收录