five

The influence of culture, structure, and human agency on interprofessional learning in a neurosurgical practice learning setting: a case study|跨专业学习数据集|神经外科数据集

收藏
DataCite Commons2021-05-20 更新2024-08-17 收录
跨专业学习
神经外科
下载链接:
https://tandf.figshare.com/articles/dataset/The_influence_of_culture_structure_and_human_agency_on_interprofessional_learning_in_a_neurosurgical_practice_learning_setting_a_case_study/12850664/1
下载链接
链接失效反馈
资源简介:
The World Health Organization supports the notion that interprofessional learning (IPL) improves healthcare outcomes and contributes to safe, effective, and high-quality care. Consequently, IPL is an integral component within most UK undergraduate healthcare programs. Although much is written about IPL, research to date has mainly focused on the classroom or simulation lab as a setting for IPL. Less is known about how the practice learning environment influences the experiences and outcomes for those involved. A case study research design, situated within a critical realist framework, was undertaken which aimed to better understand how IPL was facilitated for undergraduate healthcare students within a neurosurgical practice learning setting. Interviews, non-participatory observations, and secondary documentary data were used as the methods of data collection to inform the case. Thematic analysis was undertaken, and the findings clustered into overarching themes of culture, structure, and human agency, facilitating a more in-depth exploration of the complex interplay between the factors influencing IPL in the study setting. IPL was supported within the setting which operated as an ‘interprofessional community of practice,’ facilitating student engagement and investing in its staff for the benefit of the patients who had complex neurological needs. A practice-based IPL Multi-Dimensional Assessment Tool was also created to enable colleagues in practice learning environments worldwide to better understand their capability and capacity for the facilitation of practice-based IPL.
提供机构:
Taylor & Francis
创建时间:
2020-08-24
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

Club Football Match Data (2000 - 2025)

该数据集提供了一个简单的入口,用于分析全球27个国家和42个联赛的足球比赛数据,包括英超、德甲和西甲等顶级联赛。数据涵盖了从2000/01赛季到2024/25赛季的最新比赛结果。数据集还包括Elo评分,每月的1号和15号对欧洲约500支最佳球队进行快照。

github 收录

UAVDT

UAVDT数据集由中国科学院大学等机构创建,包含约80,000帧从10小时无人机拍摄视频中精选的图像,覆盖多种复杂城市环境。数据集主要关注车辆目标,每帧均标注了边界框及多达14种属性,如天气条件、飞行高度、相机视角等。该数据集旨在推动无人机视觉技术在不受限制场景下的研究,解决高密度、小目标、相机运动等挑战,适用于物体检测、单目标跟踪和多目标跟踪等基础视觉任务。

arXiv 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

YOLO-dataset

该数据集用于训练YOLO模型,包括分类、检测和姿态识别模型。目前支持v8版本,未来计划支持更多版本。

github 收录