Public Computer Vision Dataset for Precision Livestock Farming|精准畜牧养殖数据集|计算机视觉数据集
收藏数据集概述
3. Datasets
本节提供了与畜牧业相关的公共计算机视觉数据集的全面研究。
3.1 Cattle Datasets
- FriesianCattle2015 (Andrew et al., 2016)
- FriesianCattle2017 (Andrew et al., 2017)
- AerialCattle2017 (Andrew et al. 2017)
- Aerial-livestock-dataset (Han et al., 2019)
- BeefCattleMuzzle (G. Li et al., 2022)
- OpenCows2020 (Andrew et al., 2021)
- Cows2021 (Gao et al., 2021)
- Holstein CowRecognition (Bhole et al., 2019)
- HolsteinThermalRGB (Bhole et al., 2022)
- RecBov51c Dataset (Weber et al., 2020)
- Cattle-counting (Soares et al., 2021)
- Cattle_Dataset (Z. Li et al., 2022)
- CowBehavior (Koskela et al., 2022)
- NWAFU_CattleDataset (Li et al., 2019)
- CowDatabase (Ruchay et al., 2020)
- CowDB (Ruchay et al., 2020)
- CowDatabase2 (Ruchay et al., 2022c)
- 300-Cattle-Source (Shojaeipour et al., 2021)
- CattleVideo (Qiao et al., 2021a)
- MultiviewC (Ma et al., 2021)
- Aerial Pasture (Shao et al., 2020)
- Cattle_Visual_Behaviors (CVB) (Zia et al., 2023)
- LShapeAnalyser Dataset (Zhang et al., 2023)
- PCD Dataset (Hou et al., 2023)
- CattleEyeView (Ong et al., 2023)
- Dairy Cow (Gong et al., 2022)
- Cows Frontal Face (Ahmed et al., 2024)
3.2 Swine Datasets
- PNPB dataset (Shirke et al., 2021a)
- PigBehavior (Alameer et al., 2020)
- PigFeeding-NNVBehavior (Alameer et al., 2020)
- PigAgonistcBehavior (Han et al., 2023)
- CountingPigs (Tian et al., 2019)
- PigPosture (Riekert et al., 2020)
- Pig_Detection (Riekert et al., 2021)
- Pig_Behaviors (Bergamini et al., 2021)
- Multi-camera-pig-tracking (Shirke et al., 2021b)
- Pig-multi-part-detection (Psota et al., 2019)
- Pig_detection&tracking (Psota et al., 2020)
- MartinWut (Wutke et al., 2021)
- PigPostureAcitvity (Bhujel et al., 2021)
- PigTrace (Tangirala et al., 2021)
- LShapeAnalyser Dataset (Zhang et al., 2023)
- DifferentStagesPig (Pan et al., 2023)
- Aggressive-Behavior-Recognition (Gao et al., 2023)
3.3 Poultry Datasets
- ChickenGender (Yao et al., 2020)
- Chicken_Poo (Aworinde et al., 2023)
- Poultry_Disease (Machuve et al., 2022)
- GalliformeSpectra (Himel GMS and Islam MM, 2023)
- Broiler Dataset (Elmessery et al., 2023)
3.4 Other Livestock Datasets
- SheepBreed (Abu Jwade et al., 2019)
- SheepBase (Xue et al., 2021)
- SheepActivity (Kelly et al., 2024)
- LEsheepWeight (He et al., 2023)
- GoatImage (Billah et al., 2022)
- Drone-goat-detection (Vayssade et al., 2019)
- CherryChevre (Vayssade et al., 2023)
- Buffalo-Pak (Rauf, HT and Lali, MIU, 2021)
- Horse-10 (Mathis et al., 2019)

MedDialog
MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。
github 收录
Awesome JSON Datasets
一个精选的无需认证的JSON数据集列表。
github 收录
CIFAR-10
CIFAR-10 数据集由 10 个类别的 60000 个 32x32 彩色图像组成,每个类别包含 6000 个图像。有 50000 个训练图像和 10000 个测试图像。 数据集分为五个训练批次和一个测试批次,每个批次有 10000 张图像。测试批次恰好包含来自每个类别的 1000 个随机选择的图像。训练批次包含随机顺序的剩余图像,但一些训练批次可能包含来自一个类的图像多于另一个。在它们之间,训练批次恰好包含来自每个类别的 5000 张图像。
OpenDataLab 收录
VisDrone2019
VisDrone2019数据集由AISKYEYE团队在天津大学机器学习和数据挖掘实验室收集,包含288个视频片段共261,908帧和10,209张静态图像。数据集覆盖了中国14个不同城市的城市和乡村环境,包括行人、车辆、自行车等多种目标,以及稀疏和拥挤场景。数据集使用不同型号的无人机在各种天气和光照条件下收集,手动标注了超过260万个目标边界框,并提供了场景可见性、对象类别和遮挡等重要属性。
github 收录
ISIC 2018
ISIC 2018数据集包含2594张皮肤病变图像,用于皮肤癌检测任务。数据集分为训练集、验证集和测试集,每张图像都附有详细的元数据,包括病变类型、患者年龄、性别和解剖部位等信息。
challenge2018.isic-archive.com 收录