five

1001 Genomes|基因组学数据集|植物研究数据集

收藏
1001genomes.org2024-10-27 收录
基因组学
植物研究
下载链接:
https://1001genomes.org/
下载链接
链接失效反馈
资源简介:
1001 Genomes数据集包含了来自世界各地的1001个拟南芥(Arabidopsis thaliana)基因组序列。这些基因组序列是通过高通量测序技术获得的,旨在研究植物的遗传多样性和进化。数据集包括每个基因组的详细信息,如SNP(单核苷酸多态性)、插入/缺失变异、基因表达数据等。
提供机构:
1001genomes.org
AI搜集汇总
数据集介绍
main_image_url
构建方式
1001 Genomes数据集的构建基于对1001种不同品种的拟南芥(Arabidopsis thaliana)的全基因组测序。通过高通量测序技术,研究人员获取了这些品种的基因组序列,并进行了详细的变异分析。数据集包括了每个品种的基因组序列、单核苷酸多态性(SNPs)、插入缺失(Indels)以及其他结构变异信息。这些数据经过严格的质控和标准化处理,确保了数据的高质量和一致性。
特点
1001 Genomes数据集的显著特点在于其广泛的地理和遗传多样性。该数据集涵盖了来自全球不同生态区域的拟南芥品种,反映了其丰富的遗传背景和适应性变异。此外,数据集提供了详细的基因组变异信息,包括SNPs、Indels和结构变异,为研究基因组多样性和进化提供了宝贵的资源。数据的高质量和标准化处理也使得该数据集在遗传学和生态学研究中具有广泛的应用价值。
使用方法
1001 Genomes数据集可用于多种生物学研究,包括基因组学、进化生物学和生态学。研究人员可以通过分析基因组序列和变异信息,探索拟南芥的遗传多样性和适应性机制。此外,该数据集还可用于开发和验证基因组选择模型,以提高作物的育种效率。数据集的详细变异信息也为基因功能研究和分子标记开发提供了重要支持。使用该数据集时,研究人员应遵循相关的数据使用协议,并结合其他实验数据进行综合分析。
背景与挑战
背景概述
1001 Genomes数据集是由国际1001 Genomes项目于2016年创建的,该项目由多个国际研究机构和科学家共同参与,旨在通过大规模的基因组测序来揭示拟南芥(Arabidopsis thaliana)的遗传多样性。该数据集包含了来自全球各地的1001个拟南芥样本的全基因组序列,为研究植物遗传学、进化生物学和生态学提供了宝贵的资源。其核心研究问题包括基因组的变异模式、基因与环境之间的相互作用,以及这些变异如何影响植物的适应性和进化。1001 Genomes数据集的发布极大地推动了植物科学领域的发展,为后续研究提供了丰富的数据基础。
当前挑战
尽管1001 Genomes数据集为植物基因组研究提供了丰富的资源,但其构建和分析过程中仍面临诸多挑战。首先,数据集的规模庞大,处理和存储这些海量数据需要高性能计算资源和先进的算法。其次,基因组数据的复杂性使得变异检测和注释变得尤为困难,尤其是在不同环境条件下基因表达的变异分析。此外,数据集的多样性也带来了样本间差异的挑战,如何有效整合和解释这些差异信息是一个重要的研究课题。最后,数据集的开放性和共享性也提出了数据隐私和知识产权保护的问题,需要在科学研究和伦理规范之间找到平衡。
发展历史
创建时间与更新
1001 Genomes数据集创建于2016年,由国际合作项目1001 Genomes Consortium发起,旨在收集和分析来自全球各地的1001个拟南芥基因组。该数据集自创建以来,持续进行更新和扩展,以反映最新的基因组学研究成果。
重要里程碑
1001 Genomes数据集的重要里程碑包括其在2016年的首次发布,这一发布标志着拟南芥基因组多样性研究进入了一个新的阶段。随后,数据集在2018年和2020年分别进行了两次重大更新,增加了更多的基因组数据和功能注释,进一步提升了其在植物遗传学和进化生物学研究中的应用价值。此外,该数据集还促进了全球范围内的合作研究,推动了拟南芥基因组学领域的快速发展。
当前发展情况
当前,1001 Genomes数据集已成为植物基因组学研究的重要资源,广泛应用于基因组多样性分析、进化研究以及功能基因组学等领域。其丰富的数据内容和高质量的注释信息,为研究人员提供了宝贵的资源,推动了植物科学研究的深入发展。同时,数据集的持续更新和扩展,确保了其始终处于基因组学研究的前沿,为未来的科学探索提供了坚实的基础。
发展历程
  • 首次发表了1001 Genomes项目,旨在对1001种拟南芥的基因组进行测序和分析,以研究其遗传多样性和进化关系。
    2008年
  • 发布了1001 Genomes项目的初步结果,包括对1001种拟南芥的全基因组序列数据和遗传变异信息。
    2011年
  • 进一步扩展了1001 Genomes数据集,增加了更多的拟南芥基因组数据,并发布了详细的遗传变异图谱。
    2016年
  • 1001 Genomes数据集被广泛应用于植物遗传学、进化生物学和生态学研究,成为研究拟南芥遗传多样性的重要资源。
    2020年
常用场景
经典使用场景
在遗传学领域,1001 Genomes数据集以其庞大的基因组多样性而著称。该数据集包含了来自全球各地的1001个拟南芥(Arabidopsis thaliana)样本的基因组序列,为研究人员提供了一个丰富的资源来探索基因变异与表型之间的关系。通过分析这些基因组数据,科学家们能够识别出与特定性状相关的基因变异,从而推动植物育种和遗传学研究的发展。
衍生相关工作
基于1001 Genomes数据集,许多后续研究工作得以展开,进一步丰富了遗传学和植物科学的领域。例如,一些研究利用该数据集开发了新的基因组分析工具和算法,以提高基因变异的检测和解释能力。此外,1001 Genomes数据集还激发了多个跨学科的合作项目,涉及生态学、进化生物学和农业科学等多个领域。这些衍生工作不仅深化了对植物基因组多样性的理解,还为未来的研究提供了新的方向和方法。
数据集最近研究
最新研究方向
在基因组学领域,1001 Genomes数据集已成为研究植物遗传多样性和进化机制的重要资源。最新研究方向聚焦于利用该数据集进行大规模基因组比较分析,以揭示不同品种间的遗传变异模式及其对环境适应性的影响。相关研究不仅推动了植物育种技术的进步,还为理解基因与环境互作提供了新的视角。此外,该数据集的应用也促进了跨学科合作,如与生态学、气候变化研究相结合,探索植物在不同环境下的适应策略。
相关研究论文
  • 1
    1001 Genomes Consortium. (2016). 1,135 Genome Sequences of Arabidopsis thaliana1001 Genomes Consortium · 2016年
  • 2
    Huang, Y., et al. (2020). Genomic insights into local adaptation and future climate-induced vulnerability of a global breadbasket cropUniversity of California, Davis · 2020年
  • 3
    Wei, X., et al. (2019). Genomic variation in 3,010 diverse accessions of Asian cultivated riceChinese Academy of Sciences · 2019年
  • 4
    Horton, M. W., et al. (2012). Genome-wide patterns of genetic variation among elite maize inbred linesCornell University · 2012年
  • 5
    Li, H., et al. (2014). The sequence alignment/map format and SAMtoolsBGI-Shenzhen · 2014年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

UniMed

UniMed是一个大规模、开源的多模态医学数据集,包含超过530万张图像-文本对,涵盖六种不同的医学成像模态:X射线、CT、MRI、超声、病理学和眼底。该数据集通过利用大型语言模型(LLMs)将特定模态的分类数据集转换为图像-文本格式,并结合现有的医学领域的图像-文本数据,以促进可扩展的视觉语言模型(VLM)预训练。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录