five

5G-NIDD: A Comprehensive Network Intrusion Detection Dataset Generated over 5G Wireless Network|5G网络数据集|网络入侵检测数据集

收藏
Mendeley Data2024-03-27 更新2024-06-29 收录
5G网络
网络入侵检测
下载链接:
https://ieee-dataport.org/documents/5g-nidd-comprehensive-network-intrusion-detection-dataset-generated-over-5g-wireless
下载链接
链接失效反馈
资源简介:
With a plethora of new connections, features, and services introduced, the 5th generation (5G) wireless technology reflects the development of mobile communication networks and is here to stay for the next decade. The multitude of services and technologies that 5G incorporates have made modern communication networks very complex and sophisticated in nature. This complexity along with the incorporation of Machine Learning (ML) and Artificial Intelligence (AI) provides the opportunity for the attackers to launch intelligent attacks against the network and network devices. These attacks often traverse undetected due to the lack of intelligent security mechanisms to counter these threats. Therefore, the implementation of real-time, proactive, and self-adaptive security mechanisms throughout the network would be an integral part of 5G as well as future communication systems. Therefore, large amounts of data collected from real networks will play an important role in the training of AI/ML models to identify and detect malicious content in network traffic. This work presents 5G-NIDD, a fully labeled dataset built on a functional 5G test network that can be used by those who develop and test AI/ML solutions.5G-NIDD contains data extracted from a 5G testbed. The testbed is attached to 5G Test Network in University of Oulu, Finland. The data are extracted from tow base stations, each having an attacker node, several benign 5G users. The attacker nodes attack the server deployed in 5GTN MEC environment. The attack scenarios include DoS attacks and port scans. Under DoS attacks, the dataset contains CMP Flood, UDP Flood, SYN Flood, HTTP Flood, and Slowrate DoS. Under port scans, the dataset contains SYN Scan, CP Connect Scan, and UDP Scan.The dataset files are available in different formats. These files belong to a series of post-processing steps from network capture (pcapng) to encoded data (csv) ready to feed ML algorithms.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

Cultural Dimensions Dataset

该数据集包含了霍夫斯泰德文化维度理论(Hofstede's Cultural Dimensions Theory)的相关数据,涵盖了多个国家和地区的文化维度评分,如权力距离、个人主义与集体主义、男性化与女性化、不确定性规避、长期取向与短期取向等。这些数据有助于研究不同文化背景下的行为模式和价值观。

geerthofstede.com 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录