five

COIG-CQIA|自然语言处理数据集|指令微调数据集

收藏
huggingface2024-04-18 更新2024-12-12 收录
自然语言处理
指令微调
下载链接:
https://huggingface.co/datasets/m-a-p/COIG-CQIA
下载链接
链接失效反馈
资源简介:
COIG-CQIA全称为Chinese Open Instruction Generalist - Quality is All You Need,是一个开源的高质量指令微调数据集,由零一万物、中科院深圳先进技术研究院和M-A-P等机构构建。该数据集包含48,375个实例,源自22个不同的数据源,覆盖了从通用知识到STEM领域,再到人文学科的广泛领域。COIG-CQIA以中文互联网获取到的问答及文章作为原始数据,经过深度清洗、重构及人工审核构建而成。该数据集受LIMA: Less Is More for Alignment等研究启发,使用少量高质量的数据即可让大语言模型学习到人类交互行为,因此在数据构建中十分注重数据的来源、质量与多样性。该数据集旨在为中文NLP社区提供高质量且符合人类交互行为的指令微调数据。

COIG-CQIA全称为Chinese Open Instruction Generalist - Quality is All You Need,是一个开源的高质量指令微调数据集,由零一万物、中科院深圳先进技术研究院和M-A-P等机构构建。该数据集包含48,375个实例,源自22个不同的数据源,覆盖了从通用知识到STEM领域,再到人文学科的广泛领域。COIG-CQIA以中文互联网获取到的问答及文章作为原始数据,经过深度清洗、重构及人工审核构建而成。该数据集受LIMA: Less Is More for Alignment等研究启发,使用少量高质量的数据即可让大语言模型学习到人类交互行为,因此在数据构建中十分注重数据的来源、质量与多样性。该数据集旨在为中文NLP社区提供高质量且符合人类交互行为的指令微调数据。
提供机构:
零一万物、中科院深圳先进技术研究院和M-A-P等
创建时间:
2023-12-04
AI搜集汇总
数据集介绍
main_image_url
构建方式
COIG-CQIA数据集的构建过程体现了对数据质量的极致追求。该数据集以中文互联网中的问答和文章为基础,经过深度清洗、重构和人工审核,确保数据的准确性和多样性。数据来源广泛,涵盖了社交媒体、百科、考试试题、金融、医疗等多个领域,并通过多阶段的质量筛选和人工验证,确保每条数据的可靠性和实用性。数据构建过程中,研究者们借鉴了LIMA等研究的思想,强调通过少量高质量数据实现大语言模型的高效微调。
特点
COIG-CQIA数据集的特点在于其高质量和多样性。数据集涵盖了多个领域,包括社交媒体、百科、考试试题、金融、医疗等,确保了数据的广泛适用性。每条数据均经过人工审核,确保其符合人类交互行为的标准。此外,数据集中大部分回答由人类撰写,少部分由大模型生成并经过人工验证,进一步提升了数据的可信度。数据格式清晰,包含指令、输入、输出、任务类型、领域等多个字段,便于研究人员根据需求进行灵活使用。
使用方法
COIG-CQIA数据集适用于多种自然语言处理任务,如问答、文本分类、文本生成等。研究人员可以通过加载数据集中的不同配置文件,获取特定领域或任务类型的数据。数据格式为JSON,包含指令、输入、输出等字段,便于直接用于模型训练和评估。使用该数据集时,建议结合具体任务需求,选择合适的数据子集进行微调,以提升模型在特定领域的表现。此外,数据集中的人工验证字段可用于评估模型输出的可靠性,进一步提升模型的实用性。
背景与挑战
背景概述
COIG-CQIA数据集是由零一万物、中科院深圳先进技术研究院以及M-A-P等机构的研究者共同构建的高质量中文指令微调数据集。该数据集旨在为中文自然语言处理(NLP)社区提供符合人类交互行为的高质量指令微调数据,以提升大语言模型在中文环境下的表现。数据集构建灵感来源于《LIMA: Less Is More for Alignment》等研究,强调通过少量高质量数据实现模型的高效对齐。数据集涵盖了多个领域,包括社交媒体、百科、考试、金融、医疗等,数据来源广泛且经过深度清洗与人工审核,确保了数据的多样性与质量。
当前挑战
COIG-CQIA数据集在构建与应用过程中面临多重挑战。首先,数据质量的把控是关键,尽管数据经过深度清洗与人工审核,但中文互联网数据的噪声与不规范性仍可能影响模型训练效果。其次,数据多样性要求高,涵盖多个领域的数据需确保其代表性,避免领域偏差。此外,数据版权与伦理问题也需谨慎处理,确保数据来源合法且符合隐私保护要求。最后,如何在小规模高质量数据的基础上实现模型的高效对齐,仍需进一步探索与优化。
常用场景
经典使用场景
COIG-CQIA数据集广泛应用于中文自然语言处理领域,特别是在指令微调任务中。该数据集通过提供高质量的中文问答和文章数据,帮助研究人员训练模型以更好地理解和生成符合人类交互行为的指令响应。其多领域覆盖和深度清洗的特性,使其成为中文NLP模型微调的理想选择。
实际应用
在实际应用中,COIG-CQIA数据集被广泛用于智能客服、教育辅助系统和内容生成平台等领域。通过使用该数据集进行模型微调,智能客服系统能够更准确地理解用户指令并提供个性化服务;教育辅助系统则能够生成高质量的试题解析和学习建议;内容生成平台则能够创作出符合用户需求的多样化内容。
衍生相关工作
COIG-CQIA数据集衍生了一系列经典研究工作,如基于该数据集的中文大语言模型微调实验、多领域指令生成模型的开发以及中文NLP任务性能评估框架的构建。这些研究不仅验证了数据集的有效性,还进一步推动了中文NLP技术的创新和应用。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

UCM-Captions, Sydney-Captions, RSICD, RSITMD, NWPU-Captions, RS5M, SkyScript

UCM-Captions: 包含613张图像,分辨率为256×256。Sydney-Captions: 包含2,100张图像,分辨率为500×500。RSICD: 包含10,921张图像,分辨率为224×224。RSITMD: 包含4,743张图像,分辨率为256×256。NWPU-Captions: 包含31,500张图像,分辨率为256×256。RS5M: 包含超过500万张图像,分辨率为所有可能的分辨率。SkyScript: 包含520万张图像,分辨率为所有可能的分辨率。

github 收录

12306车次数据库

本数据库包含12306车次相关的详细信息,如车次代码、车站代码、列车基本信息和时刻表信息等。数据已按车次等级整理,并提供多种格式的数据文件,方便用户根据实际需求调用。

github 收录

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录