five

SWOT River Database (SWORD)|卫星遥感数据集|水文数据数据集

收藏
Mendeley Data2024-06-29 更新2024-06-27 收录
卫星遥感
水文数据
下载链接:
https://zenodo.org/record/5643392
下载链接
链接失效反馈
资源简介:
If you use the SWORD Database in your work, please cite: Altenau et al., (2021) The Surface Water and Ocean Topography (SWOT) Mission River Database (SWORD): A Global River Network for Satellite Data Products. Water Resources Research. https://doi.org/10.1029/2021WR030054 1. Summary: The upcoming Surface Water and Ocean Topography (SWOT) satellite mission, planned to launch in 2022, will vastly expand observations of river water surface elevation (WSE), width, and slope. In order to facilitate a wide range of new analyses with flexibility, the SWOT mission will provide a range of relevant data products. One product the SWOT mission will provide are river vector products stored in shapefile format for each SWOT overpass (JPL Internal Document, 2020b). The SWOT vector data products will be most broadly useful if they allow multitemporal analysis of river nodes and reaches covering the same river areas. Doing so requires defining SWOT reaches and nodes a priori, so that SWOT data can be assigned to them. The SWOt River Database (SWORD) combines multiple global river- and satellite-related datasets to define the nodes and reaches that will constitute SWOT river vector data products. SWORD provides high-resolution river nodes (200 m) and reaches (~10 km) in shapefile and netCDF formats with attached hydrologic variables (WSE, width, slope, etc.) as well as a consistent topological system for global rivers 30 m wide and greater. 2. Data Formats: The SWORD database is provided in netCDF and shapefile formats. All files start with a two-digit continent identifier (“af” – Africa, “as” – Asia / Siberia, “eu” – Europe / Middle East, “na” – North America, “oc” – Oceania, “sa” – South America). File syntax denotes the regional information for each file and varies slightly between netCDF and shapefile formats. NetCDF files are structured in 3 groups: centerlines, nodes, and reaches. The centerline group contains location information and associated reach and node ids along the original GRWL 30 m centerlines (Allen and Pavelsky, 2018). Node and reach groups contain hydrologic attributes at the ~200 m node and ~10 km reach locations (see description of attributes below). NetCDFs are distributed at continental scales with a filename convention as follows: [continent]_sword_v2.nc (i.e. na_sword_v2.nc). SWORD shapefiles consist of four main files (.dbf, .prj, .shp, .shx). There are separate shapefiles for nodes and reaches, where nodes are represented as ~200 m spaced points and reaches are represented as polylines. All shapefiles are in geographic (latitude/longitude) projection, referenced to datum WGS84. Shapefiles are split into HydroBASINS (Lehner and Grill, 2013) Pfafstetter level 2 basins (hbXX) for each continent with a naming convention as follows: [continent]_sword_[nodes/reaches]_hb[XX]_v2.shp (i.e. na_sword_nodes_hb74_v2.shp; na_sword_reaches_hb74_v2.shp). 3. Attribute Description: This list contains the primary attributes contained in the SWORD netCDFs and shapefiles. x: Longitude of the node or reach ranging from 180°E to 180°W (units: decimal degrees). y: Latitude of the node or reach ranging from 90°S to 90°N (units: decimal degrees). node_id: ID of each node. The format of the id is as follows: CBBBBBRRRRNNNT where C = Continent (the first number of the Pfafstetter basin code), B = Remaining Pfafstetter basin code up to level 6, R = Reach number (assigned sequentially within a level 6 basin starting at the downstream end working upstream), N = Node number (assigned sequentially within a reach starting at the downstream end working upstream), T = Type (1 – river, 3 – lake on river, 4 – dam or waterfall, 5 – unreliable topology, 6 – ghost node). node_length (node files only): Node length measured along the GRWL centerline points (units: meters). reach_id: ID of each reach. The format of the id is as follows: CBBBBBRRRRT where C = Continent (the first number of the Pfafstetter basin code), B = Remaining Pfafstetter basin codes up to level 6, R = Reach number (assigned sequentially within a level 6 basin starting at the downstream end working upstream, T = Type (1 – river, 3 – lake on river, 4 – dam or waterfall, 5 – unreliable topology, 6 – ghost reach). reach_length (reach files only): Reach length measured along the GRWL centerline points (units: meters). wse: Average water surface elevation (WSE) value for a node or reach. WSEs are extracted from the MERIT Hydro dataset (Yamazaki et al., 2019) and referenced to the EGM96 geoid (units: meters). wse_var: WSE variance along the GRWL centerline points used to calculate the average WSE for each node or reach (units: square meters). width: Average width for a node or reach (units: meters). width_var: Width variance along the GRWL centerline points used to calculate the average width for each node or reach (units: square meters). max_width: Maximum width value across the channel for each node or reach that includes island and bar areas (units: meters). facc: Maximum flow accumulation value for a node or reach. Flow accumulation values are extracted from the MERIT Hydro dataset (Yamazaki et al., 2019) (units: square kilometers). n_chan_max: Maximum number of channels for each node or reach. n_chan_mod: Mode of the number of channels for each node or reach. obstr_type: Type of obstruction for each node or reach based on the Globale Obstruction Database (GROD, Whittemore et al., 2020) and HydroFALLS data (http://wp.geog.mcgill.ca/hydrolab/hydrofalls). Obstr_type values: 0 - No Dam, 1 - Dam, 2 - Channel Dam, 3 - Lock, 4 - Low Permeable Dam, 5 - Waterfall. grod_id: The unique GROD ID for each node or reach with obstr_type values 1-4. hfalls_id: The unique HydroFALLS ID for each node or reach with obstr_type value 5. dist_out: Distance from the river outlet for each node or reach (units: meters). type: Type identifier for a node or reach: 1 – river, 2 – lake off river, 3 – lake on river, 4 – dam or waterfall, 5 – unreliable topology, 6 – ghost reach/node. lakeflag: GRWL water body identifier for each reach: 0 – river, 1 – lake/reservoir, 2 – canal, 3 – tidally influenced river. manual_add (node files only): Binary flag indicating whether the node was manually added to the public GRWL centerlines (Allen and Pavelsky, 2018). These nodes were originally given a width = 1, but have since been updated to have the reach width values. meand_len (node files only): Length of the meander that a node belongs to, measured from beginning of the meander to its end in meters. For nodes longer than one meander, the meander length will represent the average length of all meanders belonging to the node (units: meters). sinuosity (node files only): The total reach length the node belongs to divided by the Euclidean distance between the reach end points. slope (reach files only): Reach average slope calculated along the GRWL centerline points. Slopes are calculated using a linear regression (units: meters/kilometer). n_nodes (reach files only): Number of nodes associated with each reach. n_rch_up (reach files only): Number of upstream reaches for each reach. n_rch_down (reach files only): Number of downstream reaches for each reach. rch_id_up (reach files only): Reach IDs of the upstream neighboring reaches. rch_id_dn (reach files only): Reach IDs of the downstream neighboring reaches. swot_obs (reach files only): The maximum number of SWOT passes to intersect each reach during the 21 day orbit cycle. swot_orbits (reach files only): A list of the SWOT orbit tracks that intersect each reach during the 21 day orbit cycle. 4. References: Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. Science, 361(6402), 585-588. Altenau, E. H., Pavelsky, T. M., Durand, M. T., Yang X., Frasson, R. P. d. M., & Bendezu, L. (2021). The Surface Water and Ocean Topography (SWOT) Mission River Database (SWORD): A global river network for satellite data products”. Water Resources Research. Biancamaria, S., Lettenmaier, D. P., & Pavelsky, T. M. (2016). The SWOT mission and its capabilities for land hydrology. In Remote Sensing and Water Resources (pp. 117-147). Springer, Cham. JPL Internal Document (2020b). Surface Water and Ocean Topography Mission Level 2 KaRIn high rate river single pass vector product, JPL D-56413, Rev. A, https://podaac-tools.jpl.nasa.gov/drive/files/misc/web/misc/swot_mission_docs/pdd/D-56413_SWOT_Product_Description_L2_HR_RiverSP_20200825a.pdf Lehner, B., Grill G. (2013): Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes, 27(15): 2171–2186. Data is available at www.hydrosheds.org. Tessler, Z. D., Vörösmarty, C. J., Grossberg, M., Gladkova, I., Aizenman, H., Syvitski, J. P. M., & Foufoula-Georgiou, E. (2015). Profiling risk and sustainability in coastal deltas of the world. Science, 349(6248), 638-643. Whittemore, A., Ross, M. R., Dolan, W., Langhorst, T., Yang, X., Pawar, S., Jorissen, M., Lawton, E., Januchowski-Hartley, S., & Pavelsky, T. (2020). A Participatory Science Approach to Expanding Instream Infrastructure Inventories. Earth's Future, 8(11), e2020EF001558. Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G., & Pavelsky, T. (2019). MERIT Hydro: A high-resolution global hydrography map based on latest topography datasets. Water Resources Research. https://doi.org/10.1029/2019WR024873. Yang, X., Pavelsky, T. M., Allen, G. H. (2019). The past and future of global river ice. Nature. SWOT Orbits: https://www.aviso.altimetry.fr/en/missions/future-missions/swot/orbit.html HydroFALLS: http://wp.geog.mcgill.ca/hydrolab/hydrofalls/
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

网易云音乐数据集

该数据集包含了网易云音乐平台上的歌手信息、歌曲信息和歌单信息,数据通过爬虫技术获取并整理成CSV格式,用于音乐数据挖掘和推荐系统构建。

github 收录

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录

NREL Wind Integration National Dataset (WIND) Toolkit

NREL Wind Integration National Dataset (WIND) Toolkit 是一个包含美国大陆风能资源和电力系统集成数据的综合数据集。该数据集提供了高分辨率的风速、风向、风能密度、电力输出等数据,覆盖了美国大陆的多个地理区域。这些数据有助于研究人员和工程师进行风能资源评估、电力系统规划和集成研究。

www.nrel.gov 收录

TCIA

TCIA(The Cancer Imaging Archive)是一个公开的癌症影像数据集,包含多种癌症类型的医学影像数据,如CT、MRI、PET等。这些数据通常与临床和病理信息相结合,用于癌症研究和临床试验。

www.cancerimagingarchive.net 收录