community-datasets/sogou_news|新闻分类数据集|中文文本分析数据集
收藏搜狗新闻数据集(Sogou News)
数据集概述
搜狗新闻数据集包含来自搜狗CA和搜狗CS新闻语料库的2,909,551篇新闻文章,分为5个类别。每个类别的训练样本数量为90,000篇,测试样本数量为12,000篇。注意,中文汉字已转换为拼音。新闻的分类标签由其URL中的域名决定。
数据结构
数据实例
以下是一个训练样本的示例:
json { "content": "du2 jia1 ti2 go1ng me3i ri4 ba4o jia4 \n re4 xia4n :010-64438227\n che1 xi2ng ba4o jia4 - cha2 xu2n jie2 guo3 \n pi3n pa2i xi2ng ha4o jia4 ge2 ji1ng xia1o sha1ng ri4 qi1 zha1 ka4n ca1n shu4 pi2ng lu4n ", "label": 3, "title": " da3o ha2ng " }
数据字段
所有分割的数据字段相同:
title:字符串特征。content:字符串特征。label:分类标签,可能的值包括sports(0),finance(1),entertainment(2),automobile(3),technology(4)。
数据分割
| 名称 | 训练集 | 测试集 |
|---|---|---|
| 默认 | 450000 | 60000 |
数据集创建
数据集大小
- 下载的数据集文件大小:384.27 MB
- 生成的数据集大小:1.43 GB
- 总磁盘使用量:1.81 GB
引用信息
bibtex @misc{zhang2015characterlevel, title={Character-level Convolutional Networks for Text Classification}, author={Xiang Zhang and Junbo Zhao and Yann LeCun}, year={2015}, eprint={1509.01626}, archivePrefix={arXiv}, primaryClass={cs.LG} }
贡献者
感谢 @lhoestq, @mariamabarham, @lewtun, @thomwolf 添加此数据集。

UAVDT Dataset
The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.
datasetninja.com 收录
Traditional-Chinese-Medicine-Dataset-SFT
该数据集是一个高质量的中医数据集,主要由非网络来源的内部数据构成,包含约1GB的中医各个领域临床案例、名家典籍、医学百科、名词解释等优质内容。数据集99%为简体中文内容,质量优异,信息密度可观。数据集适用于预训练或继续预训练用途,未来将继续发布针对SFT/IFT的多轮对话和问答数据集。数据集可以独立使用,但建议先使用配套的预训练数据集对模型进行继续预训练后,再使用该数据集进行进一步的指令微调。数据集还包含一定比例的中文常识、中文多轮对话数据以及古文/文言文<->现代文翻译数据,以避免灾难性遗忘并加强模型表现。
huggingface 收录
中国1km分辨率逐月降水量数据集(1901-2024)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
SeaDronesSee
SeaDronesSee是由德国图宾根大学认知系统组创建的大型视觉对象检测和跟踪基准,专注于海洋环境中的人类检测。该数据集包含超过54,000帧,总计400,000个实例,从不同高度和视角(5至260米,0至90度)捕获,并提供详细的元信息。数据集的创建旨在填补陆基视觉系统与海基系统之间的差距,特别适用于无人机辅助的海上搜救任务。SeaDronesSee通过提供精确的元数据,如高度、视角和速度,支持多模态系统的开发,以提高检测的准确性和速度。此外,数据集还包括多光谱图像,利用非可见光谱(如近红外和红边光谱)来增强人类检测能力。
arXiv 收录
IWSLT/iwslt2017
IWSLT 2017数据集是一个多语言翻译数据集,涵盖了多种语言对,包括英语、阿拉伯语、德语、荷兰语、意大利语、罗马尼亚语、法语、日语、韩语和中文。数据集的主要任务是文本翻译,包括零样本翻译。数据集的结构包括训练集、验证集和测试集,每个语言对都有相应的数据实例和字段。数据集的创建过程、注释过程以及使用数据时的考虑因素等信息未在README中详细描述。
hugging_face 收录
