five

Data from: The influence of data resolution on predicted distribution and estimates of extent of current protection of three ‘listed’ deep-sea habitats|深海生态系统数据集|数据建模数据集

收藏
DataONE2015-10-26 更新2024-06-27 收录
深海生态系统
数据建模
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Modelling approaches have the potential to significantly contribute to the spatial management of the deep-sea ecosystem in a cost effective manner. However, we currently have little understanding of the accuracy of such models, developed using limited data, of varying resolution. The aim of this study was to investigate the performance of predictive models constructed using non-simulated (real world) data of different resolution. Predicted distribution maps for three deep-sea habitats were constructed using MaxEnt modelling methods using high resolution multibeam bathymetric data and associated terrain derived variables as predictors. Model performance was evaluated using repeated 75/25 training/test data partitions using AUC and threshold-dependent assessment methods. The overall extent and distribution of each habitat, and the percentage contained within an existing MPA network were quantified and compared to results from low resolution GEBCO models. Predicted spatial extent for scleractinian coral reef and Syringammina fragilissima aggregations decreased with an increase in model resolution, whereas Pheronema carpenteri total suitable area increased. Distinct differences in predicted habitat distribution were observed for all three habitats. Estimates of habitat extent contained within the MPA network all increased when modelled at fine scale. High resolution models performed better than low resolution models according to threshold-dependent evaluation. We recommend the use of high resolution multibeam bathymetry data over low resolution bathymetry data for use in modelling approaches. We do not recommend the use of predictive models to produce absolute values of habitat extent, but likely areas of suitable habitat. Assessments of MPA network effectiveness based on calculations of percentage area protection (policy driven conservation targets) from low resolution models are likely to be fit for purpose.
创建时间:
2015-10-26
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

Med-MAT

Med-MAT是一个包含106个开源医学数据集的视觉问答(VQA)数据集,旨在推动医学多模态大语言模型(MLLMs)的泛化实验和训练。数据集通过将图像-标签对转换为VQA格式,展示了组合泛化(CG)是MLLMs理解未见图像的关键机制。数据集包括106个医学数据集的问答对、53个按模态、解剖区域和任务(MAT)分类的子集的问答对,以及部分数据集的图像下载链接。

huggingface 收录

WLASL, MSASL, NMFs-CSL, SLR500, Slovo, BOBSL, 27 Class Sign Language Dataset, AUTSL, BosphorusSign22k, GSL, LSA16, LSA64, Rendered Handpose Dataset, YouTube-ASL, LSFB-ISOL, ASLLVD, AASL, KArSL, BdSLImset, HaGRID, Phoenix-2014, Phoenix-2014T

该仓库收集了多种与手语识别和翻译相关的数据集,旨在为研究者、开发者和爱好者提供一个集中的资源。数据集包括不同类型(如RGB、深度、骨骼)和来自不同国家的数据,用于支持手语识别和翻译技术的研究。

github 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录