five

鱼类目标检测数据集|目标检测数据集|鱼类识别数据集

收藏
github2024-08-26 更新2024-09-03 收录
目标检测
鱼类识别
下载链接:
https://github.com/qunshansj/Fish-identification-and-detection
下载链接
链接失效反馈
资源简介:
本数据集专为改进YOLOv8的鱼类目标检测系统而设计,包含了丰富的鱼类图像数据,旨在为研究人员和开发者提供一个高质量的训练基础。数据集的总图像数量达到了7480张,涵盖了30个不同的鱼类类别,展现了水生生态系统的多样性和复杂性。这些图像不仅为模型训练提供了充足的样本,还确保了模型在实际应用中的泛化能力。
创建时间:
2024-08-26
原始信息汇总

鱼类目标检测数据集概述

数据集信息

数据集描述

本数据集专为改进YOLOv8的鱼类目标检测系统而设计,包含了丰富的鱼类图像数据,旨在为研究人员和开发者提供一个高质量的训练基础。数据集的总图像数量达到了7480张,涵盖了30个不同的鱼类类别,展现了水生生态系统的多样性和复杂性。这些图像不仅为模型训练提供了充足的样本,还确保了模型在实际应用中的泛化能力。

类别信息

数据集包括了多种鱼类,如常见的淡水鱼和一些特定的鱼种。例如,Abramis brama(白鲤)、Acipenseridae(鲟鱼科)、Anguilla anguilla(欧洲鳗鱼)等,都是生态系统中重要的组成部分。其他类别如Cyprinus carpio(鲤鱼)、Esox lucius(北方梭鱼)和Salmo trutta subsp-fario(普通鳟鱼)等,代表了不同的栖息环境和生物特性。这种多样性不仅丰富了数据集的内容,也为目标检测模型提供了多种鱼类的特征和形态信息,有助于提高模型的识别准确率。

图像质量

每一类鱼类的图像均经过精心挑选,确保在不同的光照、角度和背景下都有良好的表现。这些图像的质量和多样性为YOLOv8模型的训练提供了坚实的基础,使其能够在实际应用中更好地识别和分类不同种类的鱼类。数据集的构建考虑到了鱼类在自然环境中的多样性,因此包含了不同水域、不同季节和不同活动状态下的鱼类图像,这将极大地增强模型的鲁棒性。

许可证

数据集的使用遵循CC BY 4.0许可证,允许用户在遵循相关规定的前提下自由使用和分享。这一开放的许可协议促进了学术界和工业界的合作,鼓励更多的研究者和开发者参与到鱼类目标检测技术的研发中来。通过共享数据集,研究人员可以更方便地进行实验和验证,推动相关领域的进步。

应用价值

这个鱼类目标检测数据集不仅为YOLOv8模型的训练提供了丰富的图像数据,还为研究人员提供了一个良好的平台,以探索和开发更先进的目标检测技术。随着对水生生物保护和生态研究的重视,鱼类目标检测技术的进步将为环境监测、渔业管理和生态保护等领域带来重要的应用价值。通过不断优化和改进检测系统,我们期待能够更好地理解和保护水生生态系统中的生物多样性。

AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集专为改进YOLOv8的鱼类目标检测系统而设计,包含了丰富的鱼类图像数据,旨在为研究人员和开发者提供一个高质量的训练基础。数据集的总图像数量达到了7480张,涵盖了30个不同的鱼类类别,展现了水生生态系统的多样性和复杂性。这些图像不仅为模型训练提供了充足的样本,还确保了模型在实际应用中的泛化能力。每一类鱼类的图像均经过精心挑选,确保在不同的光照、角度和背景下都有良好的表现。这些图像的质量和多样性为YOLOv8模型的训练提供了坚实的基础,使其能够在实际应用中更好地识别和分类不同种类的鱼类。
特点
该数据集的特点在于其高度的多样性和复杂性。数据集包含了30个不同的鱼类类别,涵盖了从淡水到海洋的多种栖息环境,具有重要的生态、经济和社会价值。这些图像不仅为模型训练提供了充足的样本,还确保了模型在实际应用中的泛化能力。此外,数据集的使用遵循CC BY 4.0许可证,允许用户在遵循相关规定的前提下自由使用和分享。这一开放的许可协议促进了学术界和工业界的合作,鼓励更多的研究者和开发者参与到鱼类目标检测技术的研发中来。
使用方法
该数据集的使用方法相对简单,首先需要下载数据集并解压缩。然后,用户可以根据自己的需求选择合适的深度学习框架(如PyTorch或TensorFlow)进行模型的训练和验证。数据集的图像可以直接用于训练YOLOv8模型,通过加载数据集中的图像和标注信息,用户可以快速构建训练和验证数据集。在训练过程中,用户可以根据需要调整模型的超参数,以优化模型的性能。训练完成后,用户可以使用训练好的模型进行鱼类目标检测,并根据检测结果进行进一步的分析和应用。
背景与挑战
背景概述
随着全球水域生态环境的变化,鱼类作为水域生态系统的重要组成部分,其种群变化和生物多样性受到越来越多的关注。传统的鱼类监测方法依赖于人工观察和捕捞,这不仅耗时耗力,而且难以全面、准确地评估鱼类种群的分布和数量。因此,开发高效、准确的鱼类目标检测系统,成为了水产科学研究和生态保护的重要任务。近年来,深度学习技术的迅猛发展为目标检测领域带来了革命性的变化,尤其是YOLO(You Only Look Once)系列模型因其高效性和实时性而广泛应用于各种目标检测任务。YOLOv8作为该系列的最新版本,进一步提升了检测精度和速度,成为研究者们关注的焦点。本研究所使用的数据集包含7480张图像,涵盖30个鱼类类别,包括常见的淡水鱼和一些经济价值较高的鱼类。这一丰富的数据集为模型的训练和验证提供了坚实的基础,旨在提升模型对不同鱼类的识别能力,进而提高检测的准确性和鲁棒性。
当前挑战
鱼类目标检测数据集的构建和应用面临着诸多挑战。首先,鱼类种类繁多,涵盖从淡水到海洋的多种栖息环境,个体差异显著,这增加了模型识别的复杂性。其次,水域环境的背景复杂性,如光照变化、水草遮挡等,对模型的鲁棒性提出了更高的要求。此外,数据集的标注工作量大且复杂,需要专业知识的支持,以确保标注的准确性和一致性。在模型训练过程中,如何有效提取和分类不同鱼类的特征,以及如何在保持高检测精度的同时提高检测速度,也是亟待解决的问题。最后,数据集的多样性和复杂性为模型的改进提供了良好的实验平台,但也增加了模型训练和优化的难度。
常用场景
经典使用场景
鱼类目标检测数据集的经典使用场景主要集中在水域生态保护和水产管理领域。通过训练基于YOLOv8的深度学习模型,该数据集能够实现对多种鱼类的自动识别和检测。这不仅提高了鱼类种群监测的效率,还为生态评估和资源管理提供了科学依据。此外,该数据集还可应用于水产养殖、渔业资源评估等领域,助力可持续发展。
实际应用
在实际应用中,鱼类目标检测数据集可广泛应用于水域生态保护、水产养殖和渔业资源管理等领域。通过自动化的检测手段,可以实现对鱼类种群动态变化的实时监测,为生态保护措施的制定和实施提供数据支持。同时,该系统还可以应用于水产养殖场,帮助养殖户实时监控鱼类的生长状况和健康状况,提高养殖效率和经济效益。此外,渔业管理部门也可以利用该系统进行渔业资源评估,制定科学的渔业管理政策。
衍生相关工作
基于鱼类目标检测数据集,研究者们开发了多种改进的YOLOv8模型,提升了鱼类检测的准确性和效率。这些改进模型不仅在学术界引起了广泛关注,还在实际应用中取得了显著成效。此外,该数据集还促进了相关领域的研究,如水生生物保护、生态系统监测和渔业资源管理等。通过共享数据集,研究人员可以更方便地进行实验和验证,推动了鱼类目标检测技术的进步和应用。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

中国空气质量数据集(2014-2020年)

数据集中的空气质量数据类型包括PM2.5, PM10, SO2, NO2, O3, CO, AQI,包含了2014-2020年全国360个城市的逐日空气质量监测数据。监测数据来自中国环境监测总站的全国城市空气质量实时发布平台,每日更新。数据集的原始文件为CSV的文本记录,通过空间化处理生产出Shape格式的空间数据。数据集包括CSV格式和Shape格式两数数据格式。

国家地球系统科学数据中心 收录

网易云音乐数据集

该数据集包含了网易云音乐平台上的歌手信息、歌曲信息和歌单信息,数据通过爬虫技术获取并整理成CSV格式,用于音乐数据挖掘和推荐系统构建。

github 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录