five

长株潭都市圈数据集(2011年-2021年)|区域经济数据集|可持续发展数据集

收藏
国家地球系统科学数据中心2024-11-25 更新2024-11-30 收录
区域经济
可持续发展
下载链接:
https://www.geodata.cn/data/datadetails.html?dataguid=12727384254266&docId=628
下载链接
链接失效反馈
资源简介:
长株潭都市圈数据集(2011—2021年)包括长株潭都市圈2011—2021年19个县级行政单元能源消费总量、全社会从业人员数、固定资产投资总额、地区生产总值、二氧化碳排放量、移动电话用户数、互联网用户数用户数、电信业务总量、数字普惠金融指数、信息传输、计算机服务和软件业法人单位数、地方一般公共预算支出、社会消费品零售总额、第二产业增加值、碳排放效率、数字经济发展水平、人均生产总值、政府干预程度、社会消费需求、城镇化率、产业结构水平的面板数据。
提供机构:
上海财经大学
创建时间:
2024-11-22
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

中国空气质量数据集(2014-2020年)

数据集中的空气质量数据类型包括PM2.5, PM10, SO2, NO2, O3, CO, AQI,包含了2014-2020年全国360个城市的逐日空气质量监测数据。监测数据来自中国环境监测总站的全国城市空气质量实时发布平台,每日更新。数据集的原始文件为CSV的文本记录,通过空间化处理生产出Shape格式的空间数据。数据集包括CSV格式和Shape格式两数数据格式。

国家地球系统科学数据中心 收录

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录

TaRF

TaRF 是由密歇根大学、耶鲁大学和加州大学伯克利分校联合创建的视触融合场景数据集,旨在将视觉与触觉信号对齐至共享的三维空间。该数据集包含 19.3k 对齐的视觉与触觉样本,覆盖 13 个普通场景,如办公室、走廊和户外环境。数据采集通过结合神经辐射场(NeRF)和触觉传感器完成,利用多视图几何方法校准视觉与触觉信号,实现空间对齐。TaRF 的创建过程包括场景的多视角视觉重建和同步采集触觉信号,最终通过扩散模型生成未直接采样的触觉信号。该数据集可用于触觉信号估计、触觉定位和材料属性理解等任务,为机器人交互和虚拟世界构建提供重要支持。

github 收录

CMNEE(Chinese Military News Event Extraction dataset)

CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。

github 收录