five

Exclusively Dark (ExDark) Image Dataset|低光图像处理数据集|目标检测数据集

收藏
github2019-08-15 更新2024-05-31 收录
低光图像处理
目标检测
下载链接:
https://github.com/xiaoye77/Exclusively-Dark-Image-Dataset
下载链接
链接失效反馈
资源简介:
为了促进低光环境下新的目标检测和图像增强研究,我们引入了Exclusively Dark (ExDark)数据集,这是一个包含7,363张从极低光环境到黄昏(即10种不同条件)的低光图像集合,具有12个对象类别(类似于PASCAL VOC),并在图像类别级别和局部对象边界框上进行了标注。

To facilitate novel research in object detection and image enhancement under low-light conditions, we introduce the Exclusively Dark (ExDark) dataset. This collection comprises 7,363 low-light images captured from extremely low-light environments to dusk, encompassing 10 distinct conditions. The dataset features 12 object categories (similar to PASCAL VOC) and is annotated at both the image category level and with localized object bounding boxes.
创建时间:
2019-06-18
原始信息汇总

Exclusively Dark (ExDark) Image Dataset

基本信息

  • 发布日期: 2018年5月29日
  • 更新日期:
    • 2019年6月2日(低光图像增强代码发布)
    • 2018年10月31日(被CVIU接受发表)

数据集描述

  • 目的: 为了促进低光环境下的新对象检测和图像增强研究。
  • 内容: 包含7,363张低光环境下的图像,涵盖从极低光到黄昏的10种不同条件,包含12个对象类别,类似于PASCAL VOC,并提供图像类别级别和局部对象边界框的标注。

数据集结构

  • 图像数量: 7,363张
  • 条件种类: 10种
  • 对象类别: 12类

代码资源

  • 低光图像增强源代码: 可在SPIC文件夹中找到。

引用信息

  • 引用格式:

@article{Exdark, title={Getting to Know Low-light Images with The Exclusively Dark Dataset}, author={Loh, Yuen Peng and Chan, Chee Seng}, journal={Computer Vision and Image Understanding}, volume={178}, pages={30-42}, year={2019}, doi={https://doi.org/10.1016/j.cviu.2018.10.010} }

AI搜集汇总
数据集介绍
main_image_url
构建方式
针对低光照环境下物体检测与图像增强研究的迫切需求,Exclusively Dark (ExDark) 数据集应运而生。该数据集通过精心筛选,汇集了7,363张低光照环境下的图像,涵盖从极暗至黄昏的10种不同光照条件,并针对12种对象类别在图像级别和局部对象边界框上进行了详尽的标注。
使用方法
使用ExDark 数据集时,研究者可依据BSD-3许可证的规定,自由地访问和使用数据集中的图像资源。数据集的源代码和增强图像的算法可在指定的GitHub目录下获得,便于研究者进行图像增强实验和模型训练。引用数据集时,应遵循提供的文献格式,以尊重原作者的知识产权和贡献。
背景与挑战
背景概述
在计算机视觉领域,低光照条件下的图像处理一直是一项挑战。为了推动低光照环境下目标检测与图像增强的研究,Exclusively Dark (ExDark)图像数据集应运而生。该数据集由马来亚大学图像与信号处理中心于2018年发布,包含7,363张从极低光照到黄昏不同光照条件下的图像,并标注了12个对象类别。此数据集旨在为研究人员提供一个研究低光照图像特性的工具,对相关领域产生了重要影响。
当前挑战
该数据集在构建过程中所面临的挑战包括低光照环境下图像的获取与标注难度,以及如何保持图像质量与增强效果之间的平衡。此外,数据集所解决的领域问题——低光照条件下的图像增强与目标检测,面临着如何提高算法在极端光照条件下的鲁棒性,以及如何有效利用有限的训练样本进行学习等挑战。
常用场景
经典使用场景
在计算机视觉与图像理解领域,Exclusively Dark (ExDark) 图像数据集专为低光照环境下的目标检测与图像增强研究而构建。该数据集包含7,363张从极暗至黄昏不同光照条件下的图像,并标注有12种物体类别,既适用于图像级别的分类,也适用于局部物体边界的定位。其经典的使用场景在于为算法提供真实世界的低光照环境图像,以训练和评估目标检测与图像增强算法的性能。
解决学术问题
该数据集解决了低光照环境下图像质量不佳和目标检测困难的核心问题,为学术研究提供了丰富的实验素材。通过ExDark,研究者能够更好地理解和处理低光照条件下的图像特征,推动了低光照图像增强和目标检测技术的发展,对于提升夜间环境下的图像识别准确率具有重要意义。
实际应用
在实际应用中,ExDark数据集的应用范围广泛,包括但不限于安防监控、自动驾驶汽车系统、夜视设备等,它有助于提高这些系统在低光照条件下的工作性能,增强其在复杂环境中的适应性和可靠性。
数据集最近研究
最新研究方向
针对低光照环境下的对象检测与图像增强研究,Exclusively Dark (ExDark) 数据集的推出无疑为学术界提供了宝贵资源。该数据集包含了7,363张低光照图像,跨越了从极暗至微光的不同光照条件,并标注有12种对象类别。近期研究集中于利用此数据集进行图像增强算法的改进,以及提升在低光照环境下的对象检测准确度,这对于夜视系统、安全监控等领域具有显著意义。特别是,CVIU2019上接受发表的《Getting to Know Low-light Images with The Exclusively Dark Dataset》一文,不仅详细介绍了数据集,而且推动了低光照图像理解技术的发展,为相关领域的深入研究奠定了基础。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国裁判文书网

中国裁判文书网是中国最高人民法院设立的官方网站,旨在公开各级法院的裁判文书。该数据集包含了大量的法律文书,如判决书、裁定书、调解书等,涵盖了民事、刑事、行政、知识产权等多个法律领域。

wenshu.court.gov.cn 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

VisDrone2019

VisDrone2019数据集由AISKYEYE团队在天津大学机器学习和数据挖掘实验室收集,包含288个视频片段共261,908帧和10,209张静态图像。数据集覆盖了中国14个不同城市的城市和乡村环境,包括行人、车辆、自行车等多种目标,以及稀疏和拥挤场景。数据集使用不同型号的无人机在各种天气和光照条件下收集,手动标注了超过260万个目标边界框,并提供了场景可见性、对象类别和遮挡等重要属性。

github 收录

马达加斯加岛 – 世界地理数据大百科辞条

马达加斯加岛在非洲的东南部,位于11o56′59″S - 25o36′25″S及43o11′18″E - 50o29′36″E之间。通过莫桑比克海峡与位于非洲大陆的莫桑比克相望,最近距离为415千米。临近的岛屿分别为西北部的科摩罗群岛、北部的塞舌尔群岛、东部的毛里求斯岛和留尼汪岛等。在google earth 2015年遥感影像基础上研发的马达加斯加海岸线数据集表明,马达加斯加岛面积591,128.68平方千米,其中马达加斯加本岛面积589,015.06平方千米,周边小岛面积为2,113.62平方千米。马达加斯加本岛是非洲第一大岛,是仅次于格陵兰、新几内亚岛和加里曼丹岛的世界第四大岛屿。岛的形状呈南北走向狭长纺锤形,南北向长1,572千米;南北窄,中部宽,最宽处达574千米。海岸线总长16,309.27千米, 其中马达加斯加本岛海岸线长10,899.03千米,周边小岛海岸线长5,410.24千米。马达加斯加岛属于马达加斯加共和国。全国共划分22个区,119个县。22个区分别为:阿那拉芒加区,第亚那区,上马齐亚特拉区,博爱尼区,阿齐那那那区,阿齐莫-安德列发那区,萨瓦区,伊达西区,法基南卡拉塔区,邦古拉法区,索非亚区,贝齐博卡区,梅拉基区,阿拉奥特拉-曼古罗区,阿那拉兰基罗富区,阿莫罗尼马尼亚区,法土法韦-非图韦那尼区,阿齐莫-阿齐那那那区,伊霍罗贝区,美那贝区,安德罗伊区和阿诺西区。首都安塔那那利佛(Antananarivo)位于岛屿的中东部。马达加斯加岛是由火山及喀斯特地貌为主。贯穿海岛的是巨大火山岩山体-察腊塔纳山,其主峰马鲁穆库特鲁山(Maromokotro)海拔2,876米,是全国最高峰。马达加斯加自然景观垂直地带性分异显著,是热带雨林和热带草原广布的地区。岛上大约有20多万种动植物,其中包括马达加斯加特有物种狐猴(Lemur catta)、马达加斯加国树猴面包树(Adansonia digitata L.)等。

国家对地观测科学数据中心 收录