DriveMLLM|自动驾驶数据集|空间理解数据集
收藏DriveMLLM: A Benchmark for Spatial Understanding with Multimodal Large Language Models in Autonomous Driving
数据集概述
- 数据集名称: MLLM_eval_dataset
- 数据来源:
- 图像数据来自nuScenes验证集中的
CAM_FRONT。 - 提供了一个
metadata.jsonl文件,包含图像的属性如location2D。
- 图像数据来自nuScenes验证集中的
- 数据集用途: 用于评估多模态大语言模型在自动驾驶中的空间理解能力。
数据集使用
0. 准备数据集
- 数据集链接: MLLM_eval_dataset
1. 环境设置
- 环境设置文档: Setup Environment
2. 推理
- 推理脚本:
-
GPT API: shell export OPENAI_API_KEY=your_api_key python inference/get_MLLM_output.py --model_type gpt --model gpt-4o --hf_dataset bonbon-rj/MLLM_eval_dataset --prompts_dir prompt/prompts --save_dir inference/mllm_outputs
-
Gemini API: shell export GOOGLE_API_KEY=your_api_key python inference/get_MLLM_output.py --model_type gemini --model models/gemini-1.5-flash --hf_dataset bonbon-rj/MLLM_eval_dataset --prompts_dir prompt/prompts --save_dir inference/mllm_outputs
-
Local LLaVA-Next: shell python inference/get_MLLM_output.py --model_type llava --model lmms-lab/llava-onevision-qwen2-7b-si --hf_dataset bonbon-rj/MLLM_eval_dataset --prompts_dir prompt/prompts --save_dir inference/mllm_outputs
-
Local QWen2-VL: shell python inference/get_MLLM_output.py --model_type qwen --model Qwen/Qwen2-VL-7B-Instruct --hf_dataset bonbon-rj/MLLM_eval_dataset --prompts_dir prompt/prompts --save_dir inference/mllm_outputs
-
3. 评估
- 评估脚本:
-
评估所有结果: shell python evaluation/eval_from_json.py --hf_dataset bonbon-rj/MLLM_eval_dataset --eval_root_dir inference/mllm_outputs --save_dir evaluation/eval_result --eval_model_path all
-
评估特定结果: shell python evaluation/eval_from_json.py --hf_dataset bonbon-rj/MLLM_eval_dataset --eval_root_dir inference/mllm_outputs --save_dir evaluation/eval_result --eval_model_path gemini/gemini-1.5-flash
-
引用
@article{DriveMLLM, title={DriveMLLM: A Benchmark for Spatial Understanding with Multimodal Large Language Models in Autonomous Driving}, author={Guo, Xianda and Zhang Ruijun and Duan Yiqun and He Yuhang and Zhang, Chenming and Chen, Long}, journal={arXiv preprint arXiv:2411.13112}, year={2024} }

- 1DriveMLLM: A Benchmark for Spatial Understanding with Multimodal Large Language Models in Autonomous Driving中国科学院自动化研究所 · 2024年
China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录
flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
中国近海地形数据集(渤海,黄海,东海,南海)
本数据集包含历年来通过收集和实测方法取得的中国近海水深点数据、地形图数据(ArcGIS格式),以及黄河口、莱州湾东部、辽东湾、山东南部沿海、南海部分海域的单波束、多波束水深测量数据,包括大尺度的低密度水深数据与局部高密度水深数据。
地球大数据科学工程 收录
WideIRSTD Dataset
WideIRSTD数据集包含七个公开数据集:SIRST-V2、IRSTD-1K、IRDST、NUDT-SIRST、NUDT-SIRST-Sea、NUDT-MIRSDT、Anti-UAV,以及由国防科技大学团队开发的数据集,包括模拟陆基和太空基数据,以及真实手动标注的太空基数据。数据集包含具有各种目标形状(如点目标、斑点目标、扩展目标)、波长(如近红外、短波红外和热红外)、图像分辨率(如256、512、1024、3200等)的图像,以及不同的成像系统(如陆基、空基和太空基成像系统)。
github 收录
中国交通事故深度调查(CIDAS)数据集
交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、
北方大数据交易中心 收录
