five

GS-Blur|图像去模糊数据集|图像处理数据集

收藏
arXiv2024-10-31 更新2024-11-02 收录
图像去模糊
图像处理
下载链接:
https://github.com/dongwoohhh/GS-Blur
下载链接
链接失效反馈
资源简介:
GS-Blur数据集是由首尔国立大学创建的一个用于真实图像去模糊的3D场景数据集。该数据集通过3D高斯喷射(3DGS)技术从多视角图像中重建3D场景,并沿随机生成的运动轨迹渲染模糊图像,从而生成大量真实且多样化的模糊图像。数据集包含156209条数据,涵盖了多种模糊类型和轨迹,旨在解决现有数据集在模糊多样性和真实性方面的不足。GS-Blur数据集的应用领域主要集中在图像去模糊技术,旨在提高去模糊网络在真实世界模糊图像上的泛化能力。
提供机构:
首尔国立大学
创建时间:
2024-10-31
AI搜集汇总
数据集介绍
main_image_url
构建方式
GS-Blur数据集通过一种创新的方法构建,利用3D高斯喷射(3DGS)技术从多视角图像中重建3D场景。首先,从现有的多视角数据集MVImgNet中选择图像,训练3DGS模型以重建3D场景。随后,通过在随机生成的运动轨迹上移动相机视图,从这些重建的3D场景中渲染出模糊图像。这种方法不仅避免了传统数据集在捕捉真实模糊时的局限性,还通过多样化的相机轨迹生成了更加真实和多样的模糊类型。
使用方法
GS-Blur数据集适用于训练各种去模糊网络,特别是那些需要大量多样化模糊图像的深度学习模型。使用者可以通过下载数据集并按照提供的训练协议进行模型训练。数据集包含了清晰图像和对应的模糊图像对,以及详细的构建方法和参数设置,确保研究者能够复现实验结果并进行进一步的研究。
背景与挑战
背景概述
GS-Blur数据集由首尔国立大学的Dongwoo Lee、Joonkyu Park和Kyoung Mu Lee等人于2024年提出,旨在解决现有图像去模糊数据集在模糊类型多样性和真实世界模糊场景反映不足的问题。该数据集通过3D高斯喷射(3DGS)技术,从多视角图像中重建3D场景,并沿随机生成的运动轨迹渲染模糊图像,从而生成具有高度真实感和多样性的模糊图像。GS-Blur数据集的提出,不仅丰富了模糊图像的类型,还显著提升了去模糊网络在真实世界模糊图像上的泛化能力,对图像恢复领域具有重要影响。
当前挑战
GS-Blur数据集在构建过程中面临多项挑战。首先,现有数据集主要通过合成或复杂相机系统收集模糊图像,这些方法在模糊类型(模糊轨迹)的多样性上存在局限,或需要大量人力重建大规模数据集,无法全面反映真实世界的模糊场景。其次,合成模糊图像的方法依赖于高帧率相机捕捉连续清晰帧,通过聚合这些帧生成模糊图像,但这种模糊与真实世界模糊存在差异,泛化能力有限。此外,使用分光镜相机系统生成更真实的模糊图像,虽然适用于实际应用,但需要精确的相机系统设计,且依赖特定相机模型,限制了其通用性。GS-Blur通过创新的3D场景重建和渲染方法,有效克服了这些挑战,提供了更具泛化能力的去模糊数据集。
常用场景
经典使用场景
GS-Blur数据集的经典使用场景主要集中在图像去模糊任务中。通过利用3D高斯喷射技术(3DGS)从多视角图像中重建3D场景,并沿着随机生成的运动轨迹渲染模糊图像,该数据集提供了大量真实且多样化的模糊图像对。这些图像对被广泛用于训练深度神经网络,以提高其在真实世界模糊图像上的去模糊性能。
解决学术问题
GS-Blur数据集解决了现有去模糊数据集在模糊类型多样性和真实性方面的不足。传统数据集要么通过合成方法生成模糊图像,要么使用复杂的相机系统捕捉真实模糊,但这些方法在模糊轨迹的多样性或数据集规模上存在局限。GS-Blur通过模拟真实世界的模糊场景,提供了更广泛和多样化的模糊类型,有助于提升去模糊算法在实际应用中的泛化能力。
实际应用
GS-Blur数据集在实际应用中具有广泛的前景,特别是在需要高质量图像恢复的领域,如监控系统、自动驾驶和医学成像。通过提供真实且多样化的模糊图像对,该数据集能够有效训练和验证去模糊算法,从而在实际场景中实现更精确的图像恢复,提升系统的整体性能和可靠性。
数据集最近研究
最新研究方向
在图像去模糊领域,GS-Blur数据集的最新研究方向主要集中在通过3D场景重建技术生成高度逼真的模糊图像。该数据集通过3D高斯喷射(3DGS)技术,从多视角图像中重建3D场景,并沿随机生成的运动轨迹渲染模糊图像,从而解决了现有数据集在模糊类型多样性和真实性方面的局限。GS-Blur数据集不仅提供了大规模的模糊图像,还通过多种相机轨迹和分辨率增强了数据集的多样性,使其在训练去模糊网络时表现出更好的泛化能力。此外,该数据集还引入了噪声添加和多分辨率渲染等技术,进一步提升了去模糊效果在真实世界图像中的适用性。
相关研究论文
  • 1
    GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring首尔国立大学 · 2024年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

日食计算器

此日食计算器能够查询公元前3000至后3000年范围内的日食信息,生成每次日食的覆盖区、中心区范围数据,展示日食带的地图;并可根据用户在地图上点击的坐标在线计算该地日食各阶段时间、食分等观测信息。

国家天文科学数据中心 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

China Family Panel Studies (CFPS)

Please visit CFPS official data platform to download the newest data, WeChat official account of CFPS: ISSS_CFPS. The CFPS 2010 baseline survey conducted face-to-face interviews with the sampled households’ family members who live in the sample communities. It also interviewed those family members who were elsewhere in the same county. For those who were not present at home at the time of interview, basic information was collected from their family members at presence. All family members who had blood/marital/adoptive ties with the household were identified as permanent respondents. Prospective family members including new-borns and adopted children.

DataCite Commons 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录