MIT Indoor Scenes|室内场景识别数据集|计算机视觉数据集
收藏
- MIT Indoor Scenes数据集首次发表,由麻省理工学院(MIT)的研究团队创建,旨在用于室内场景识别研究。
- 该数据集首次应用于计算机视觉领域的室内场景分类任务,展示了其在场景识别中的有效性。
- 随着深度学习技术的兴起,MIT Indoor Scenes数据集被广泛用于训练和评估卷积神经网络(CNN)在室内场景识别中的性能。
- 该数据集成为室内场景识别领域的一个基准数据集,被多个研究团队用于验证新算法和模型的有效性。
- MIT Indoor Scenes数据集的扩展版本发布,增加了更多的场景类别和图像样本,进一步丰富了数据集的内容。
- 该数据集在多个国际计算机视觉竞赛中被用作标准测试集,推动了室内场景识别技术的持续发展。
- 1Recognizing Indoor ScenesMassachusetts Institute of Technology · 2009年
- 2Indoor Segmentation and Support Inference from RGBD ImagesUniversity of Oxford · 2012年
- 3Indoor-Outdoor Image Classification Using Convolutional Neural NetworksUniversity of California, Berkeley · 2016年
- 4Deep Learning for Scene Recognition: A SurveyTsinghua University · 2018年
- 5Scene Recognition with CNNs: Objects, Scales and Dataset BiasUniversity of California, Los Angeles · 2017年
中国交通事故深度调查(CIDAS)数据集
交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、
北方大数据交易中心 收录
学生课堂行为数据集 (SCB-dataset3)
学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。
arXiv 收录
CIFAR-10-C
CIFAR-10-C是一个用于评估机器学习模型鲁棒性的数据集。它是CIFAR-10数据集的变体,包含了对原始CIFAR-10图像应用多种不同类型的图像损坏(如噪声、模糊、对比度变化等)后的图像。该数据集旨在帮助研究人员测试和改进模型在面对图像损坏时的表现。
github.com 收录
China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录
TCIA: The Cancer Imaging Archive
TCIA: The Cancer Imaging Archive 是一个公开的癌症影像数据库,包含多种癌症类型的影像数据,如乳腺癌、肺癌、脑癌等。数据集还包括相关的临床数据和生物标记物信息,旨在支持癌症研究和临床应用。
www.cancerimagingarchive.net 收录