five

Data from: An integrated population model for bird monitoring in North America|鸟类监测数据集|种群模型数据集

收藏
DataONE2016-12-27 更新2024-06-26 收录
鸟类监测
种群模型
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Integrated population models (IPMs) provide a unified framework for simultaneously analyzing data sets of different types to estimate vital rates, population size, and dynamics; assess contributions of demographic parameters to population changes; and assess population viability. Strengths of an IPM include the ability to estimate latent parameters and improve the precision of parameter estimates. We present a hierarchical IPM that combines two broad-scale avian monitoring data sets; count data from the North American Breeding Bird Survey (BBS) and capture-recapture data from the Monitoring Avian Productivity and Survivorship (MAPS) program. These data sets are characterized by large numbers of sample sites and observers, factors capable of inducing error in the sampling and observation processes. The IPM integrates the data sets by modeling the population abundance as a first-order autoregressive function of the previous year's population abundance and vital rates. BBS counts were modeled as a log-linear function of the annual index of population abundance, observation effects (observer identity and first-survey-year), and overdispersion. Vital rates modeled included adult apparent survival, estimated from a transient Cormack-Jolly-Seber model using MAPS data, and recruitment (surviving hatched birds from the previous season + dispersing adults) estimated as a latent parameter. An assessment of the IPM demonstrated it could recover true parameter values from 200 simulated data sets. The IPM was applied to data sets (1992-2008) of two bird species, gray catbird (Dumetella carolinensis) and wood thrush (Hylocichla mustelina) in the New England/Mid-Atlantic coastal Bird Conservation Region of the USA. The gray catbird population was relatively stable (trend 0.4% yr−1), while the wood thrush population nearly halved (trend -4.5% yr−1) over the 17-yr study period. IPM estimates of population growth rates, adult survival, and detection and residency probabilities were similar and as precise as estimates from the stand-alone BBS and CJS models. A benefit of using the IPM was its ability to estimate the latent recruitment parameter. Annual growth rates for both species correlated more with recruitment than survival, and the relationship for wood thrush was stronger than for gray catbird. The IPM's unified modeling framework facilitates integration of these important data sets.
创建时间:
2016-12-27
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

Materials Project

材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)

OpenDataLab 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录