SceneNet|3D场景理解数据集|计算机视觉数据集
收藏
- SceneNet数据集首次发表,由NVIDIA研究团队提出,旨在为计算机视觉领域提供大规模的室内场景合成数据。
- SceneNet RGB-D版本发布,增加了深度信息,进一步提升了数据集的应用价值,特别是在三维重建和机器人导航领域。
- SceneNet数据集在多个国际会议和期刊上被广泛引用,成为室内场景理解和合成研究的重要基准。
- SceneNet数据集的应用扩展到自动驾驶和增强现实领域,展示了其在不同场景下的通用性和灵活性。
- SceneNet数据集的更新版本发布,增加了更多的场景类型和物体类别,进一步丰富了数据集的内容和多样性。
- 1SceneNet: Understanding Real World Indoor Scenes with Synthetic DataUniversity of California, Berkeley · 2016年
- 2SceneNet RGB-D: Can 5M Synthetic Images Beat Generic ImageNet Pre-training on Indoor Segmentation?University of California, Berkeley · 2018年
- 3Synthetic Data for Deep LearningUniversity of California, Berkeley · 2019年
- 4Learning to Segment Indoor Scenes from Synthetic DataUniversity of California, Berkeley · 2018年
- 5Synthetic Data for Training Deep Learning Models: A SurveyUniversity of California, Berkeley · 2020年
FER2013
FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。
github 收录
烟火数据集
烟火数据集是一个专门用于烟火识别和检测任务的数据集,旨在帮助研究人员开发更加精确和高效的烟火识别算法。包含了大量真实场景下的烟火视频数据,具有广泛的应用前景和重要的研究价值。
阿里云天池 收录
中亚主要国家的原油资源的储量、产量、消费量及其占世界比重(1985-2016)
中亚五国中,石油资源主要分布在哈萨克斯坦、乌兹别克斯坦、土库曼斯坦三个国家。根据BP世界能源统计年鉴,经整理、抽取、计算和汇总后,形成中亚主要国家(哈萨克斯坦、乌兹别克斯坦、土库曼斯坦)原油资源的储量、产量、消费量及其占世界比重的统计表。 主要指标包括: (1)储量,1991-2016年,单位:百万吨 (2)产量,1985-2016年,单位:百万吨 (3)储产比,1991-2016年,单位:百万吨 (4)消费量,1985-2016年,单位:百万吨 (5)产消差额,1985-2016年,单位:百万吨 此外,以上数据均包括中亚地区的哈萨克斯坦、乌兹别克斯坦、土库曼斯坦、三国汇总以及世界总量的情况。
地球大数据科学工程 收录
UniProt
UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。
www.uniprot.org 收录
红外谱图数据库
收集整理红外谱图实验手册等数据,建成了红外谱图数据库。本数据库收录了常见化合物的红外谱图。主要包括化合物数据和对应的红外谱图数据。其中,原始红外谱图都进行了数字化处理,从而使谱峰检索成为可能。用户可以在数据库中检索指定化合物的谱图,也可以提交谱图/谱峰数据,以检索与之相似的谱图数据,以协助进行谱图鉴定。
国家基础学科公共科学数据中心 收录