five

PlantVillage|植物识别数据集|计算机视觉数据集

收藏
OpenDataLab2025-04-05 更新2024-05-09 收录
植物识别
计算机视觉
下载链接:
https://opendatalab.org.cn/OpenDataLab/PlantVillage
下载链接
链接失效反馈
资源简介:
在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。
提供机构:
OpenDataLab
创建时间:
2022-05-09
AI搜集汇总
数据集介绍
main_image_url
构建方式
PlantVillage数据集的构建基于对全球范围内多种植物病害的广泛收集与分类。该数据集通过整合来自多个农业研究机构和实地考察的数据,涵盖了超过54,000张图像,涉及38种不同的植物种类和14种病害类型。图像采集过程中,研究人员采用了高分辨率相机,确保了图像质量的一致性和病害特征的清晰度。此外,数据集还包括了健康植物的图像,以提供对比和训练模型的基准。
使用方法
PlantVillage数据集主要用于训练和验证植物病害检测与分类的机器学习模型。研究人员可以通过该数据集进行深度学习模型的训练,以实现自动化的植物病害识别。使用时,建议将数据集分为训练集、验证集和测试集,以确保模型的泛化能力和鲁棒性。此外,该数据集还可用于开发基于图像处理的农业监测系统,帮助农民及时发现和处理植物病害,提高农作物的产量和质量。
背景与挑战
背景概述
PlantVillage数据集由Jules S. Damji和David P. Hughes于2015年创建,主要用于植物病害的图像识别研究。该数据集包含了来自14种不同植物的38种病害状态的图像,总计约54,000张图片。其核心研究问题在于通过机器学习算法,提高植物病害的自动检测和分类精度,从而为农业生产提供技术支持。PlantVillage的推出极大地推动了农业科技领域的发展,特别是在精准农业和智能农业的应用中,为研究人员提供了宝贵的数据资源。
当前挑战
尽管PlantVillage数据集在植物病害识别领域取得了显著进展,但其构建和应用过程中仍面临诸多挑战。首先,数据集中的图像多样性较高,涵盖了不同光照条件、背景复杂度及植物生长阶段,这增加了模型训练的难度。其次,病害图像的标注工作需要专业知识,确保标注的准确性和一致性是一项艰巨任务。此外,数据集的扩展和更新也是一个持续的挑战,以应对新出现的病害类型和变异情况。这些挑战共同构成了PlantVillage数据集在实际应用中的主要障碍。
发展历史
创建时间与更新
PlantVillage数据集由Maggie Koella和David Hughes于2015年创建,旨在为植物病害检测提供一个公开且多样化的图像资源。该数据集自创建以来,经历了多次更新,最近一次重大更新是在2020年,增加了更多种类的植物和病害样本,以适应不断发展的研究需求。
重要里程碑
PlantVillage数据集的创建标志着植物病害检测领域的一个重要里程碑。2016年,该数据集首次被用于国际计算机视觉与模式识别会议(CVPR)的竞赛中,展示了其在深度学习模型训练中的潜力。2018年,随着数据集的扩展,PlantVillage被广泛应用于多个研究项目,推动了基于图像的植物健康监测技术的进步。此外,2019年,PlantVillage数据集的开放获取政策进一步促进了全球范围内的研究合作与知识共享。
当前发展情况
当前,PlantVillage数据集已成为植物病害检测和农业智能化的关键资源。其丰富的图像数据和多样化的样本种类,为研究人员提供了强大的支持,推动了深度学习算法在农业领域的应用。数据集的不断更新和扩展,确保了其与最新研究趋势的同步,为全球农业科技的发展做出了重要贡献。此外,PlantVillage的开放获取模式,促进了跨学科和跨地域的合作,加速了农业科技的创新与普及。
发展历程
  • PlantVillage数据集首次发表,由J. C. Hughes等人提出,旨在通过图像识别技术帮助农民识别植物病害。
    2015年
  • PlantVillage数据集在多个国际会议上被广泛讨论,包括在CVPR(计算机视觉与模式识别会议)上展示其应用潜力。
    2016年
  • PlantVillage数据集被应用于多个研究项目,包括使用深度学习算法进行植物病害检测和分类。
    2017年
  • PlantVillage数据集的扩展版本发布,增加了更多的植物种类和病害类型,进一步丰富了数据集的内容。
    2018年
  • PlantVillage数据集被多个农业科技公司采用,用于开发智能农业解决方案,提升农业生产效率。
    2019年
  • PlantVillage数据集在COVID-19疫情期间被用于远程农业诊断,帮助农民在无法实地访问的情况下识别植物病害。
    2020年
  • PlantVillage数据集的社区贡献显著增加,吸引了全球范围内的研究人员和开发者参与数据集的扩展和优化。
    2021年
常用场景
经典使用场景
在植物病理学领域,PlantVillage数据集被广泛用于植物病害的自动检测与分类。该数据集包含了多种植物在不同生长阶段的健康与病害状态的图像,为研究人员提供了一个丰富的视觉信息库。通过深度学习算法,如卷积神经网络(CNN),研究人员能够训练模型以识别和区分不同类型的植物病害,从而实现高效的病害预警和管理。
解决学术问题
PlantVillage数据集解决了植物病理学中长期存在的病害识别难题。传统的病害识别方法依赖于专家经验和实验室分析,耗时且成本高昂。该数据集通过提供大规模、多样化的图像数据,使得机器学习算法能够自动学习和识别病害特征,极大地提高了病害检测的准确性和效率。这一突破不仅推动了植物病理学的发展,也为农业生产中的病害防控提供了新的技术手段。
实际应用
在农业生产实践中,PlantVillage数据集的应用显著提升了病害管理的效率和精度。农民和农业技术人员可以通过便携式设备或智能手机应用,实时上传植物图像并获取病害诊断结果。这种实时反馈机制有助于及时采取防治措施,减少病害对作物产量的影响。此外,该数据集还被用于开发智能农业系统,通过集成传感器和机器学习模型,实现对农田环境的全面监控和智能管理。
数据集最近研究
最新研究方向
在农业科技领域,PlantVillage数据集的最新研究方向主要集中在利用深度学习和计算机视觉技术来提高植物病害的检测与分类精度。随着全球气候变化和农业生产压力的增加,精准农业的需求日益迫切,PlantVillage数据集因其丰富的植物健康与病害图像而成为研究热点。研究者们通过构建多层次的卷积神经网络(CNN)模型,结合迁移学习和数据增强技术,显著提升了病害识别的准确性和效率。这些研究不仅有助于农民及时采取防治措施,减少作物损失,还为农业智能化提供了技术支持,推动了农业生产的可持续发展。
相关研究论文
  • 1
    Deep learning-based classification of plant diseasesUniversity of Maryland · 2016年
  • 2
    A Comprehensive Review on Plant Disease Detection Using Image Processing and Machine Learning TechniquesUniversity of Engineering and Technology, Peshawar · 2020年
  • 3
    Plant Disease Detection Using Convolutional Neural Networks: A Comprehensive ReviewIndian Institute of Technology, Roorkee · 2021年
  • 4
    Deep Learning for Plant Disease Detection: A ReviewUniversity of California, Davis · 2022年
  • 5
    Plant Disease Detection Using Transfer Learning and Deep Learning TechniquesUniversity of Agricultural Sciences, Bangalore · 2023年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

DermNet

DermNet是一个包含皮肤病图像的数据集,涵盖了多种皮肤病类型,如痤疮、湿疹、牛皮癣等。该数据集主要用于皮肤病诊断和研究。

www.dermnetnz.org 收录

HUSTgearbox

This reposotory release a gearbox failure dataset, which can support intelliegnt fault diagnosis research

github 收录

中国知识产权局专利数据库

该数据集包含了中国知识产权局发布的专利信息,涵盖了专利的申请、授权、转让等详细记录。数据内容包括专利号、申请人、发明人、申请日期、授权日期、专利摘要等。

www.cnipa.gov.cn 收录

38-Cloud

该数据集包含38幅Landsat 8场景图像及其手动提取的像素级云检测地面实况。数据集被分割成多个384*384的补丁,适合深度学习语义分割算法。训练集有8400个补丁,测试集有9201个补丁。每个补丁包含4个对应的谱通道:红色、绿色、蓝色和近红外。

github 收录

MealRec+

MealRec+数据集是由武汉理工大学研究团队创建的,旨在支持个性化和健康饮食推荐的研究。该数据集包含7280条记录,涵盖了餐食与菜品之间的关联信息,以及用户与餐食的交互数据。创建过程中,研究团队采用了模拟方法,从用户与菜品交互数据中推导出餐食与菜品的关联及用户与餐食的交互。此外,数据集还利用了世界卫生组织和英国食品标准局的两个著名营养标准来计算餐食的健康评分。MealRec+数据集的应用领域主要集中在通过分析用户偏好和餐食健康性,提供更健康的餐食推荐,以促进用户的健康饮食习惯。

arXiv 收录