five

Archer, Patten, Coombes - 2017 - Free-water and free-water corrected fractional anisotropy in primary and premotor corticospinal tracts.pdf|中风研究数据集|神经影像学数据集

收藏
Mendeley Data2024-01-31 更新2024-06-30 收录
中风研究
神经影像学
下载链接:
https://hra.figshare.com/articles/Archer_Patten_Coombes_-_2017_-_Free-water_and_free-water_corrected_fractional_anisotropy_in_primary_and_premotor_corticospinal_tracts_pdf/7798445
下载链接
链接失效反馈
资源简介:
Measures from diffusion MRI have been used to characterize the corticospinal tract in chronic stroke. However, diffusivity can be influenced by partial volume effects from free-water, region of interest placement, and lesion masking. We collected diffusion MRI from a cohort of chronic stroke patients and controls and used a bitensor model to calculate free-water corrected fractional anisotropy (FAT) and free water (FW) in the primary motor corticospinal tract (M1-CST) and the dorsal premotor corticospinal tract (PMd-CST). Region of interest analyses and whole-tract slice-by-slice analyses were used to assess between-group differences in FAT and FW in each tract. Correlations between FAT and FW and grip strength were also examined. Following lesion masking and correction for multiple comparisons, relative increases in FW were found for the stroke group in large portions of the M1- CST and PMd-CST in the lesioned hemisphere. FW in cortical regions was the strongest predictor of grip strength in the stroke group. Our findings also demonstrated that FAT is sensitive to the direct effects of the lesion itself, thus after controlling for the lesion, differences in FAT in nonlesioned tissue were small and generally similar between hemispheres and groups. Our observations suggest that FW may be a robust biological measurement that can be used to assess microstructure in residual white matter after stroke.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

Amazon Reviews 2023

该数据集包含用户评论,如评分、评论文本、有用投票等,以及商品元数据,如产品描述、定价、图片等。数据集比以前的版本大245.2%,包含571.54M条评论,并具有更丰富的描述性商品特征和细粒度的时间戳。

github 收录

Materials Project

材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)

OpenDataLab 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

网易云音乐数据集

该数据集包含了网易云音乐平台上的歌手信息、歌曲信息和歌单信息,数据通过爬虫技术获取并整理成CSV格式,用于音乐数据挖掘和推荐系统构建。

github 收录