five

Business Impact of COVID-19 Survey, 2020: Secure Access|COVID-19数据集|商业影响数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
COVID-19
商业影响
下载链接:
https://beta.ukdataservice.ac.uk/datacatalogue/doi/?id=8653#1
下载链接
链接失效反馈
资源简介:
<div>The <span style="font-style: italic;">Business Impact of COVID-19 Survey, 2020: Secure Access</span> is a voluntary fortnightly survey of businesses developed to deliver timely indicators to help understand the impact of the coronavirus pandemic (COVID-19). The survey captures businesses responses on how their turnover, workforce, prices, trade and business resilience have been affected in the two week reference period.<br class="Apple-interchange-newline"></div><div><br></div><div>The data should be treated with caution as results reflect the characteristics of those who responded and not necessarily the wider business population. Comparison of the proportions of businesses' trading status between waves should be treated with caution because of the voluntary nature of the survey, the difference in response rates and dependency on those businesses that only responded in particular waves. These data should not be used in place of official statistics. The survey was designed to give an indication of the impact of the coronavirus on businesses and a timelier estimate than other surveys.</div><div><br></div><div>The first edition of this study includes Waves 1 to 4 only covering the following reference periods:</div><div><br></div><div>Wave 1: 9th March to 22nd March 2020;&nbsp;</div><div>Wave 2: 23rd March to 5th April 2020;&nbsp;</div><div>Wave 3: 6th April to 19th April 2020;&nbsp;</div><div>Wave 4: 20th April to 3rd May 2020.<br><br><div>The latest publications from the survey can be found on the <a href="https://www.ons.gov.uk/businessindustryandtrade/business/businessservices/bulletins/coronavirusandtheeconomicimpactsontheuk/previousReleases" target="_blank">Coronavirus and the Economic Impacts on the UK Statistical Bulletins</a> webpage and all the questions asked in each wave of the survey can be found on the <a href="https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/businessimpactofcovid19surveyquestions/previousReleases" target="_blank">BICS Survey Questions Articles</a> webpage.</div></div>
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

HUSTgearbox

This reposotory release a gearbox failure dataset, which can support intelliegnt fault diagnosis research

github 收录

38-Cloud

该数据集包含38幅Landsat 8场景图像及其手动提取的像素级云检测地面实况。数据集被分割成多个384*384的补丁,适合深度学习语义分割算法。训练集有8400个补丁,测试集有9201个补丁。每个补丁包含4个对应的谱通道:红色、绿色、蓝色和近红外。

github 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录

中国逐日降水数据集(1961-2022,0.1°/0.25°/0.5°)

CHM_PRE数据集基于中国境内及周边1961至今共2839个站点的日降水观测,在传统的“降水背景场 + 降水比值场”的数据集构建思路上,尝试应用月值降水约束和地形特征校正,并依据中国范围内约4万个高密度站点2015–2019年的日降水量插值后数据进行精度评价。经评估认为,CHM_PRE可以较好的表征降水的空间变异性,其日值时间序列与高密度站点日值降水观测结果之间的相关系数中位数为0.78,均方根误差中位数为8.8 mm/d,KGE值中位数为0.69,与目前常用的降水数据集(CGDPA、CN05.1、CMA V2.0)有很好的一致性。 数据集的时间范围为1961年至今,空间分辨率为0.1°、0.25°和0.5°,经纬度范围为18°N–54°N, 72°E–136°E。

国家青藏高原科学数据中心 收录

中国近海台风路径集合数据集(1945-2023)

1945-2023年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。注:时间为北京时间。

国家海洋科学数据中心 收录