five

Data from: Parallel genetic adaptation across environments differing in mode of growth or resource availability|遗传进化数据集|环境适应性数据集

收藏
DataONE2018-07-11 更新2024-06-08 收录
遗传进化
环境适应性
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Evolution experiments have demonstrated high levels of genetic parallelism between populations evolving in identical environments. However, natural populations evolve in complex environments that can vary in many ways, likely sharing some characteristics but not others. Here we ask whether shared selection pressures drive parallel evolution across distinct environments. We addressed this question in experimentally evolved populations founded from a clone of the bacterium <i>Burkholderia cenocepacia</i>. These populations evolved for 90 days (approximately 600 generations) under all combinations of high or low carbon availability and selection for either planktonic or biofilm modes of growth. Populations that evolved in environments with shared selection pressures (either level of carbon availability or mode of growth) were more genetically similar to each other than populations from environments that shared neither characteristic. However, not all shared selection pressures led to parallel evolution. Genetic parallelism between low-carbon biofilm and low-carbon planktonic populations was very low despite shared selection for growth under low-carbon conditions, suggesting that evolution in low-carbon environments may generate stronger tradeoffs between biofilm and planktonic modes of growth. For all environments, a population’s fitness in a particular environment was positively correlated with the genetic similarity between that population and the populations that evolved in that particular environment. Although genetic similarity was low between low-carbon environments, overall, evolution in similar environments led to higher levels of genetic parallelism and that genetic parallelism, in turn, was correlated with fitness in a particular environment.
创建时间:
2018-07-11
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

TM-Senti

TM-Senti是由伦敦玛丽女王大学开发的一个大规模、远距离监督的Twitter情感数据集,包含超过1.84亿条推文,覆盖了超过七年的时间跨度。该数据集基于互联网档案馆的公开推文存档,可以完全重新构建,包括推文元数据且无缺失推文。数据集内容丰富,涵盖多种语言,主要用于情感分析和文本分类等任务。创建过程中,研究团队精心筛选了表情符号和表情,确保数据集的质量和多样性。该数据集的应用领域广泛,旨在解决社交媒体情感表达的长期变化问题,特别是在表情符号和表情使用上的趋势分析。

arXiv 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

UniMed

UniMed是一个大规模、开源的多模态医学数据集,包含超过530万张图像-文本对,涵盖六种不同的医学成像模态:X射线、CT、MRI、超声、病理学和眼底。该数据集通过利用大型语言模型(LLMs)将特定模态的分类数据集转换为图像-文本格式,并结合现有的医学领域的图像-文本数据,以促进可扩展的视觉语言模型(VLM)预训练。

github 收录

ChemBL

ChemBL是一个化学信息学数据库,包含大量生物活性数据,涵盖了药物发现和开发过程中的各种化学实体。数据集包括化合物的结构信息、生物活性数据、靶点信息等。

www.ebi.ac.uk 收录